Full text: [Disquisitiones arithmeticae] (1. Band)

quae quantitas erit numerus integer, quia per hyp. r ipsum u K metitur, nec non 
mm ipsum 4D, adeoque a potiori m ipsum 2D. Porro erit u 2 ^ = ^ 
et quoniam 
4t l t l = -j- 4mm 
adeoque per mm divisibilis, 2 t l erit divisibilis per m, et proin u' K per r, sive 
u 2/ ' = w°(mod. r 
Tertio invenitur 
et quoniam ex simili ratione ~~~ est integer, erit 
¿2X + 1 — ¿'( moc p r 
, , 2t x+x u l 
Tandem reperitur 
et quoniam 2t XJtl per m divisibilis est, u per r: erit 
u 2l + l = u (mod.r). Q. JE. D. 
Ceterum usus posteriorum duarum observationum in sequentibus apparebit. 
Casus particularis problematis, nempe solvere aequationem tt — Duu — 1, 
am a geometris seculi praecedentis fuit agitatus. Sagacissimus Fermatius pro- 
»lema hoc analystis Anglis proposuit, Wallisiusque Brounkerum tamquam inven- 
orem solutionis, quam in Alg. Cap. 98, Opp. T. II p. 418 sqq. tradit, nominat; 
)zanarn Fermatium; denique ill. Euler, qui de illo egit in Comm. Petr.YI p. 17 5, 
lomm. nov. XI p. 28 # ), Algebra P. II p. 226, Opusc. An. I p. 310, Pellium, unde 
*) In hac coram, algorithmic quem art. 27 exposuimus, per similia signa exhibetur, quod nos illic an- 
otare negleximus. 
25 *
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.