Full text: [Disquisitiones arithmeticae] (1. Band)

FORMAE TERNARIAE. 
321 
y vero statuendo 
x = g p —h q, x' — gp -|- h'q, x" = g"p -|- h!'q 
atque esse 
r ff ff r f 7 rr !f 7 r T 
m n — mn --- -- (j h — g h = L 
mn — m n = g"h — g K' = L' 
m n — mn =. gK — gh = L" 
Accipiantur integri /, V, l" ita ut fiat Ll-\-L'V-\-L"l" = 1, ponaturque 
ril"— nl' = M, nl — nl" = M\ n V— nl = M" 
l'm—l"m = N, l"m — hn = N', Ini—Vm=-N" 
denique statuatur 
g M-\-g'M'-\-g"M" = «, h M -f- KM'-f- h"M” = 6 
g N + /iVH- /iV" =y, hN KN' H- h"N" = 3 
Hinc facile deducitur 
"»» + T« = g—l(gL+g'L’-\-g"L") =g 
im+Sn = h — l(hL + h'L'+h"L") = h 
similique modo 
a m-\- yri = g', fi m-(- Sn — /¿', a m"-\- y A' = g", fi m-j- d w" — /¿" 
Hinc patet, m t -f- n u, »ft -j- n «, m"t -f- transire per substitutionem 
t=.ap-\-fiq, u = yp-\-$q ... {S) 
in gp-^hq, g'p-\-tiq: g"p ~h h"q resp., unde manifestum est, cp transire per 
substitutionem S in eandem formam, in quam f transeat ponendo 
x = gp-\-hq, x = g'p-\-h'q, x" — g”p-\-h f, q 
adeoque in formam y, cui itaque aequivalet. Denique per substitutiones debitas 
facile invenitur 
aB — fiy = [Ll+L'l'+L"Vj = l 
quocirca substitutio $ est propria, formaeque cp, / proprie aequivalentes. 
41
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.