FORMAE TERNARIAE.
321
y vero statuendo
x = g p —h q, x' — gp -|- h'q, x" = g"p -|- h!'q
atque esse
r ff ff r f 7 rr !f 7 r T
m n — mn --- -- (j h — g h = L
mn — m n = g"h — g K' = L'
m n — mn =. gK — gh = L"
Accipiantur integri /, V, l" ita ut fiat Ll-\-L'V-\-L"l" = 1, ponaturque
ril"— nl' = M, nl — nl" = M\ n V— nl = M"
l'm—l"m = N, l"m — hn = N', Ini—Vm=-N"
denique statuatur
g M-\-g'M'-\-g"M" = «, h M -f- KM'-f- h"M” = 6
g N + /iVH- /iV" =y, hN KN' H- h"N" = 3
Hinc facile deducitur
"»» + T« = g—l(gL+g'L’-\-g"L") =g
im+Sn = h — l(hL + h'L'+h"L") = h
similique modo
a m-\- yri = g', fi m-(- Sn — /¿', a m"-\- y A' = g", fi m-j- d w" — /¿"
Hinc patet, m t -f- n u, »ft -j- n «, m"t -f- transire per substitutionem
t=.ap-\-fiq, u = yp-\-$q ... {S)
in gp-^hq, g'p-\-tiq: g"p ~h h"q resp., unde manifestum est, cp transire per
substitutionem S in eandem formam, in quam f transeat ponendo
x = gp-\-hq, x = g'p-\-h'q, x" — g”p-\-h f, q
adeoque in formam y, cui itaque aequivalet. Denique per substitutiones debitas
facile invenitur
aB — fiy = [Ll+L'l'+L"Vj = l
quocirca substitutio $ est propria, formaeque cp, / proprie aequivalentes.
41