Full text: [Disquisitiones arithmeticae] (1. Band)

maisgmmu .-'■m 
unde 
SOLUTIO AEQUATIONIS X = 0. 431 
PP = p-\- 2/+ 3/', pp" = 2jp+3/+/', //' = 3^+/+ 2/' 
B = Q{p4-/4-/') — e (i8, i) = — e 
denique iit 
C' = (i>+ 2 /+ 3/')/' = 3 (6, o) 4-11 [p4-/4-/') = 18 — 11 — 7 
quare aequatio quaesita 
<2? 3 + <2?07—6<a?—7 = 0 
Utendo methodo altera habemus 
p +/ 4~P = — 1 
PP — 64-2^>4-/4-2/', pp' = 6-j-2/-f-/'4-2p, //' = 6+2/'+j? + 2/ 
unde 
PP 4-pp-\rp"p" — 184-5 [p 4-/4-/') = 13 
similiterque 
/4-/ 3 4-/' 3 — 36 + 34 + +/+/') = 2 
hinc per theorema Newtonianum eadem aequatio derivatur ut ante. 
II. Quaeritur pro n — 19 aequatio, cuius radices sint aggregata (2, 1), (2, 7), 
(2.8) . Quibus resp. per q, q, q designatis, invenitur 
?+?'+?" = ( 6 > i), qq'-i-qq"-hq'q = (6, i) + (6,4), qq' q " = 2 +(6, 2) 
unde, retentis signis* ex. praec., aequatio quaesita erit 
oc 3 —pxx-\- [p-\-p") oc—2—/— 0 
Aequatio, cuius radices sunt aggregata (2,2), (2,3), (2,5), sub (6,2) contenta, e 
praecedente deducitur, substituendo pro p, /, p resp. /, p", p, eademque sub 
stitutione iterum factfi, prodit aequatio, cuius radices sunt aggregata (2, 4), (2, 6), 
(2.9) sub (6,4) contenta. 
Disquisitionibus praecc. superstruitur solutio aequationis X — 0. 
* 352. 
Theoremata praecedentia cum consectariis annexis praecipua totius theoriae 
momenta continent, modusque valores radicum £2 inveniendi paucis iam tradi 
poterit.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.