COMMENTATIO SECUNDA.
145
— 2 hy = 6
stit in tribus
i — 6)r] + aC,
numeros po-
»rro quum sit
im F [a — 6),
icare tertiam
— b), condi-
bus ipsius X
et £ positivi
valore itaque
- iM+S[«->”]
Sed fit. scribendo terminos inverso ordine,
’ /
- [f.] + [H] + [n]+ • • • • ■+[ (S T S ’ , 1 = »)
Formula itaque nostra sequentem induit formam:
g = cp(a— 6, a+6) + <p(2 6, a) — <p(«, 6) —cp(6, a)+£6 6
Consideremus primo terminum cp(« — 6, a -f- 6), qui protinus transmutatur
in cp(^ — 6, 2 6) —(— 1 —|— 2 —|— 3 —|— etc. —(— — 6 —l) sive in
?(« — &. 2b)-\-i({a—6) 2 — 1)
sumus (Conf.
r. de residuis
4( a —
concilientur,
— 2 a x
20 : q^re
Uein quum per theorema generale fiat cp(i, w)-|-cp(w, i) = [F^] • [F^]» dum
t, u sunt integri positivi inter se primi, habemus
cp(« — 6, 2 6) = ±b{a — 6—1) — cp(26, a—b)
adeoque
<p(a — b, a-{-b) = ^[aa-\-1ab—3bb — 4 6—1) — cp(2 6, a — 6)
Disponamus partes ipsius cp(2 6, a — 6) sequenti modo
se
l^J+[% 1) ] + l%- ) ]+ etc. + [fcil£zJ]
+[“7 i ]+[ 2( T i) ]+[ 3( T i) ]+ etc - +[^F J) ]
Series secunda manifesto fit
itegros ipsius
ad i {a —i),
— cp(6, a — b) = cp(6, a) — 1 — 2 — 3— etc. —\b = cp(6, a) — i(66-|-26)
seriem primam ordine terminorum inverso ita exhibemus:
itato (Theore-
[$■(«+1—b)— ^] + [4(«+ 3 — & )—+ — 6 )~2l] + etc - ^ 26 ]
quae expressio, quum denotante t numerum integrum, u fractum, generaliter sit
i t — u\ = t—1 — \u ", mutatur in sequentem
m [-fi], ter-
indus vero fit
*6(a«—4 —6)—[|g—[‘-3— etc. -[<V1
= i-b (2 a — 4 — 6) — 9 (2 6, a) -|- (6, a)
19