Full text: [Höhere Arithmetik] Theorematis arithmetici (2. Band)

COMMENTATIO SECUNDA. 
145 
— 2 hy = 6 
stit in tribus 
i — 6)r] + aC, 
numeros po- 
»rro quum sit 
im F [a — 6), 
icare tertiam 
— b), condi- 
bus ipsius X 
et £ positivi 
valore itaque 
- iM+S[«->”] 
Sed fit. scribendo terminos inverso ordine, 
’ / 
- [f.] + [H] + [n]+ • • • • ■+[ (S T S ’ , 1 = ») 
Formula itaque nostra sequentem induit formam: 
g = cp(a— 6, a+6) + <p(2 6, a) — <p(«, 6) —cp(6, a)+£6 6 
Consideremus primo terminum cp(« — 6, a -f- 6), qui protinus transmutatur 
in cp(^ — 6, 2 6) —(— 1 —|— 2 —|— 3 —|— etc. —(— — 6 —l) sive in 
?(« — &. 2b)-\-i({a—6) 2 — 1) 
sumus (Conf. 
r. de residuis 
4( a — 
concilientur, 
— 2 a x 
20 : q^re 
Uein quum per theorema generale fiat cp(i, w)-|-cp(w, i) = [F^] • [F^]» dum 
t, u sunt integri positivi inter se primi, habemus 
cp(« — 6, 2 6) = ±b{a — 6—1) — cp(26, a—b) 
adeoque 
<p(a — b, a-{-b) = ^[aa-\-1ab—3bb — 4 6—1) — cp(2 6, a — 6) 
Disponamus partes ipsius cp(2 6, a — 6) sequenti modo 
se 
l^J+[% 1) ] + l%- ) ]+ etc. + [fcil£zJ] 
+[“7 i ]+[ 2( T i) ]+[ 3( T i) ]+ etc - +[^F J) ] 
Series secunda manifesto fit 
itegros ipsius 
ad i {a —i), 
— cp(6, a — b) = cp(6, a) — 1 — 2 — 3— etc. —\b = cp(6, a) — i(66-|-26) 
seriem primam ordine terminorum inverso ita exhibemus: 
itato (Theore- 
[$■(«+1—b)— ^] + [4(«+ 3 — & )—+ — 6 )~2l] + etc - ^ 26 ] 
quae expressio, quum denotante t numerum integrum, u fractum, generaliter sit 
i t — u\ = t—1 — \u ", mutatur in sequentem 
m [-fi], ter- 
indus vero fit 
*6(a«—4 —6)—[|g—[‘-3— etc. -[<V1 
= i-b (2 a — 4 — 6) — 9 (2 6, a) -|- (6, a) 
19
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.