Full text: [Höhere Arithmetik] Theorematis arithmetici (2. Band)

SERIERUM SINGULARIUM. 
27 
1 —y 
-! I „-8 (l-r 2OT )(l-r a>W ) ..-3 (l-y- 2m+2 ) (i-r 2 ^) I Ptr 
1 W“ 2 1 (l ?/ -2 ’1 fl W~ 4 'l f* '•' -2 ' (' ^ t* 
y~~) (1—jr*) 
i tum 
(i—y 2 ) (!—y 4 ) (i—y G ) 
•y “ ' v ( 
usque ad terminum un -{-l 
= (1 — y - *) (!+y“ S ) i 1 —y -3 ) ( 1 +y -4 ) • ■ ■ (1 ±y 
P] 
Quodsi hic pro y accipitur radix propria aequationis y n —1 = 0, puta r, atque 
simul statuitur m = n — 1, erit 
i—y 
i—y" 
i—r‘ 
1 — r~ 
1—y~ 
l—y- 
i— y 
1— r* 
1 — r" 
r c etc. 
usque ad 
-y~~ i- 
‘in—2 
1-y- 
ubi notandum, nullum denominatorum 1 — r 
aequatio [7] hancce formam assumit 
1 — r 4 etc. fieri = 0. Hinc 
1 —1— T —I— t 4 —1— ?* 9 —[— etc. -j-A n ’^ 2 = (1—r 4 ) ( 1 —)— v 2 )(1—r 3 ). . . . (1-f-r n + l ) 
Multiplicando in membro secundo huius aequationis terminum primum per ulti 
mum , secundum per penultimum etc., habemus 
(1 — r” 1 ) (1 -}- y~ w+1 ) = r — r~ l 
__ r n-2_ r -n+2 
(1 — r- 3 ) (1 -j- ?*~ ii+3 ) — r 3 —r~ 3 
(1 + r~ 4 )(l — r~ n + 4 ) = r n -~ 4 — r~ n + 4 etc. 
Ex his productis partialibus facile perspicietur conflari productum 
(r — r- 1 ) {r 3 — r~ 3 ) (r 5 —r~ 5 } (r n ~ 4 — r~ n + 4 ) (r n ~ 2 — r~ n + 2 ) 
quod itaque erit 
= 1 -j- r-\-r 4 -\- r 9 -f- etc. -\-r^ n = W 
Haec aequatio identica est cum aequ. [5] in art. 12 e progressione prima derivata, 
ratiociniaque dein reliqua eodem modo adstruentur, ut in artt. 13 et 14. 
4 *
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.