Full text: [Höhere Arithmetik] Theorematis arithmetici (2. Band)

56 
THEOREMATIS FUNDAMENTALIS IN DOCTRINA DE RESIDUIS QUADRATICIS 
täte diminutae divisibiles erunt per I — ; quamobrem in hoc casu etiam 
fix n )—p per 1 — x p et proin etiam per ~~ divisibilis erit. 
3. 
Theorema. Statuendo 
x — x* -f- x rm — x* 3 -f- x a * — etc. —- x aP 2 = 4 
i . • ■ ■ . ■ . 
erit 44 + p divisibilis per accepto signo superiori, quoties p est formae 
4 k —|— 1, inferiori, quoties p) est formae Ak-f-3. 
Demonstr. Facile perspicietur, ex p — 1 functionibus hisce 
-\-xi—xx-\-x a+1 — xf m+l -f- etc. -\~x aP ~ +1 
— x a i — x %0 ' -f- —<r* 3+a —}— etc. —x* P 1+a 
-f x rm 4 — x^ aa +x a3+aa — x a * +aa + etc. + x aP+aa 
— x°4 — x' ,j3 -f- x a * +a¡> — x a * +rjS + etc. -f- x aP+l+aS 
etc. usque ad 
x 
' £ ^ 
C, — X 
+<3? a 
i +* P ~ 2 _ aJ * p + 
primam fieri =0, singulas reliquas autem per 1 — x v divisibiles. Quare per 
1 — x p etiam divisibilis erit omnium summa, quae colligitur 
= ii—(/M — i) + (/+ +1 ) 
= 44— f(xx) +/++ 1 ) —/(<37 
-1) - (/(* aa+1 ) -1)+C/K 8+1 ) -1) - 
+ № a ^ 2+1 )—i) 
aa+1 ) -f-/(a? a * +1 ) — etc. -J- f{x aP '+ 1 ) = 12 
etc. 
Erit itaque haecce expressio Q etiam divisibilis per —f?-. lam inter exponentes 
2, (X-j-1, aa-f-1, ct 3 —1 a p ' + 1 unicus tantum erit divisibilis per p, 
puta a~^ p 1 ^ —f-1, unde per art. praec. singulae partes expressionis 12 hae 
f{xx'), /+ +1 ), f{x m+l ), (/++ 1 ) etc. 
excepto solo termino f{x ai{P ~ >]+1 ), divisibiles erunt per \=-f. Istas itaque par 
tes delere licebit, ita ut per etiam divisibilis maneat functio
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.