Full text: [Höhere Arithmetik] Theorematis arithmetici (2. Band)

;ofe 
n 
90 THEORIA RESIDUORUM BIQUADRATICORUM. 
denotando per P coefficientem medium 
Up—0 • i(p— 3) • i{p — 5) \{p + 3) 
1 • 2 . 3 \{p— 1) 
Substituendo itaque pro oo deinceps numeros 1, 2, 3 . . , .jt?— 1, obtinebimus per 
lemma art. 1 9 
2 (¿p 4 -f-1)' 
\{p— i) — 
P 
At perpendendo ea quae in art. 19 exposuimus, insuperque, quod numeri com 
plexuum A, B, C, P>, ad potestatem exponentis \ [p— 1) evecti congrui sunt, 
secundum modulum p, numeris —1, —1, -j-1, —1 resp., facile intelligitur fieri 
2(a? 4 +1)»^- 1 ) = 4(00) — 4(01) + 4(02) — 4(03) 
adeoque per schemata in fine artt. 18, 20 tradita 
2(»‘ + l)‘('’-‘) = —2«-2 
Comparatio horum duorum valorum suppeditat elegantissimum theorema: scili 
cet habemus 
P = 2 a (mod. p) 
Denotando quatuor producta 
1-2.3 ±{p-1) 
*(P+ 3 )-+b + 7)-i(P + ll) 
i(i > + 1 )-Ui»+ 3 )-+(y + 5 ) *(*—1) 
t(3jt) + l).i(3p + 5).i(3 i ) + 9) (p-i) 
resp. per q, r, s, t, theorema praecedens ita exhibetur: 
2 a = ~ (mod. p) 
Quum quilibet factorum ipsius q complementum suum ad p habeat in t, erit 
q = t (mod. p), quoties multitudo factorum par est, i. e. quoties p est formae 
8w-j-l, contra q = —t, quoties multitudo factorum impar est, sive p formae 
8w-j-5. Perinde in casu priori erit r = s, in posteriori r = —s. In utroque 
casu erit qr = st, et quum constet, haberi qrst=—1, erit qqrr = —1,
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.