’
THEORIA INTERPOLATIONIS METHODO NOVA TRACTATA.
273
Multiplicentur hae aequationes resp. per
i
(a — b){a— c)(a — d). •
1
.. (a t)
')
{b— a) (è— c)(i — d) ..
1
. .{b t)
(c — c) (c — b) (c — d) ..
i
..(c — t)
1
1
? «
-M
i ®
..(d-t)
nnium
1 -m — 2
l
(t — a) [t — b) {t — c)..
prodeatque inde per productorum additionem
A
: cum
(a — b) (a — c) (a — d) .
1 B
. .(a — t)
1 {h — a ){b—c){b — d).
1 C
..(b-t)
1 (c — a) (c — b) (c — d) •
I D
. . (c — t)
•
1 (d—a){d—b){d—c) .
-f- etc.
1 T
..{d-t)
H
C+.
1
1
o*
C-+,
1
cs.
-d)...
ii con-
im m.
3spon-
X va-
t va-
m-f-1
Tunc ex art. 1, ubi m idem denotabat, quod hic nobis est m-\-1, facile conclu
detur, fieri W = 0; quamobrem multiplicando per (t—a) (t— h) (t— c)... prodit
rp {t— V) — c ) {t • • • A
(a — b){a— c){a— d) . . .
■ {t— a) {t — c) {t — d) . . . j)
' (J — o) (b — c) {b— d) ...
. {t— a) (t — b) {t — d). . . p
' (c —a) (c — b){c — d). . .
■ [t—a){t — b){t — c) . . . t\
[d—a){d—b){d—c) ...
—f— etc.
4.
Formula in art. praec. inventa, ita comparata est, ut sponte sine omni cal
culo pateat, si pro t quantitatum a, b, c, d . . aliqua in illa substituatur, valorem
respondentem A, B, C, D.. inde prodire. Neque hoc solo respectu sese commen
dat: certo enim ad usum practicum longe commodissima est, saltem quoties uni-
35