Full text: [Allgemeine Analysis] Theoria combinationis observationum erroribus minimis obnoxiae (3. Band)

OMNEM FUNCTIONEM ALGEBRA1CAM ETC. 
21 
si formula detur, 
ionaliter exhibeat, 
Hic enim valor 
valores ipsius M\ 
js irrationales esse 
rrationalem ipsius 
Ex hoc specimine 
isse satisfacientem, 
in theoriam elimi- 
14. 
Lemma. Si quantitas r angulusque cp ita sunt determinati, ut habeantur ae 
quationes 
r m cos m cp A r m ~ 1 cos [m — 1) cp -f- B r ?n—2 cos (m — 2) cp—|— etc. 
—|— Kr r cos 2 cp —J— L r cos cp —j— ilL = 0 . . [t 
r m sin m cp -J- A r m ~ x sin (m — 1) cp -|- B r m ~ 2 sin [m — 2) cp —j— etc. 
-j-JLrrsin 2 cp-f-i r sin cp = 0 . , [2] 
functio x m + A x m ~ l -f- -S + etc. Kxx-\-Lx-f M = X divisiUUis erit per 
factorem duplicem xx — 2 cos cp. rx -f- rr, si modo r sin cp non = 0; si vero r sin cp = 0. 
eadem functio divisibilis erit per factorem simplicem x — reos cp. 
Demonstr. I. Ex art. praec. omnes sequentes quantitates divisibiles erunt 
im. Sur la for me 
de Berlin 1772, 
sctus in Euleri de- 
ira (art. 8) obiectio- 
us est, ut nihil am- 
i super theoria eli- 
, superesse videan- 
lin etiam tota dis- 
11 gradus revera m 
per xx—2 cos cp .rx-\-rr: 
sinep.r# m — sin my.r m x sin (m — l)cp.r wl+1 
A sin cp. r x m ~ l — A sin (m — 1) cp. r m ~ 1 x-\- A sin [m — 2) cp. r m 
B sin cp, rx m ~ 2 —B sin [m — 2) cp. r m ~ 1 x-\-B sin {m—3) cp. r” 1-! 
etc. etc. 
Ksiny.rxx —ii sin 2 cp .rrx -f- ii sin cp . r 3 
L sin cf .rx — L sin cp .rx # 
ilisin cp. r. # -j~4isin (— cp). r 
Quamobrem etiam summa harum quantitatum per xx—2 coscp .r^-f-rr 
s, demonstrationem 
ititam peritis haud 
divisibilis erit. At singularum partes primae constituunt summam sincp.rX; 
secundae additae dant 0, propter [2]; tertiarum vero aggregatum quoque eva 
nescere, facile perspicitur, si [1] multiplicatur per sincp, [2] per coscp, pro- 
ductumque illud ab hoc subducitur. Unde sequitur, functionem sincp.rX di 
visibilem esse per xx—2coscp .rx-\-rr, adeoque, nisi fuerit rsincp = 0, etiam 
uemcunqne, functio 
n ,x— 2 cos cp. rx -}- rr. 
quemcunque facto- 
i valore maiori quo- 
f- sin (m — 1 )cp. 
?— 2 cos Cp . rx-frr, 
functionem X. Q. E. P. 
II. Si vero r sincp = 0, erit aut r = 0 aut sincp = 0. In casu priori erit 
M=0, propter [1], adeoque X per x sive per x — r coscp divisibilis; in poste 
riori erit cos cp = +1, cos 2 cp == —j— 1, cos 3 cp = +1 et generaliter cos n cp = cos cp". 
Quare propter [ 1 fiet X = 0 , statuendo x — r cos cp , et proin functio X per 
x — r coscp erit divisibilis. Q. E. S.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.