Full text: [Allgemeine Analysis] Theoria combinationis observationum erroribus minimis obnoxiae (3. Band)

DE ORIGINE NUMERORUM MEDIORUM ARITHM. GEOMETRICORUM ETC. 
c = na, c" — na!', c" ==■ na!", 'c = 'an, d y = nb y , y d ==■' bn 
Hinc facile deducitur, etiam limitem serierum I, II, fore ad limitem serierum 
III, IV ut 1 ad n, sive generaliter M(na,nb) =nM.[a,b). Erit itaque generali- 
ter M(o,i) = «M{l,|) = iM(|,l). 
5. 
Problema. Exprimere medium arithmetico-geometricum inter numerum unitate 
maiorem 1 —J—¿c et unitatem, per seriem secundum potestates ipsius x progredientem. 
Sol. Quum M(l,l) = l, supponamus 
M (i _|_ x, 1) = 1 -\-h!x-\- h"x 2 + h'"x 3 -f- h"" x i -f- etc. 
ita ut h', h", K", K"' sint coefficientes constantes ab x non pendentes. Sit 
x — 2t-\-tt, eritque 
M(l + «r, 1) = + 1 + 0 = (l + i)M(l+^, 1). 
Quare habebitur 
l + h'{2t-\-tt) + h"[2t+ttf-{-h" , {2t-\-tt) 3 + etc. 
= 1 + i+i 0+K (7+7p + etc - 
Hinc prodeunt aequationes 
2h' = 1 
4 h" + h'=ih' 
8 K" +4 h!'= 0 
16 h"" + 12 h'" + K' — 
32Ä V + 32k"” + 6r=- ih" 
Mh n + 80Ä V + 24 Ä w + h'"=ih"+ih'" 
128 h m + 19 2 A VI + 80A V +8 h""= 
256 /0 m + 448 Ä vn + 240 Ä VI + 40 Ä V + h""= +tV^ 
etc. unde iit 
h'=i, h"—— T \, h'"= -+, h"" = 
Quare 
M(l+o?, 1) — 1 -\-^x—^xx-\--fax 3 — T-ffir«^ 6 etc - 
Ceterum nullo negotio perspicitur, medium inter 1 et numerum unitate minorem 
2 1 
1 0T4 ’
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.