Full text: [Mathematische Physik] Theoria attractionis corporum sphaeroidicorum ellipticorum homogeneorum (5. Band)

6 
THEORIA ATTRACTIONIS CORPORUM 
dl = — d/.cos QX' = + d5". cos QX" = — ds'". cos QX'" etc. 
adeoque propter partium multitudinem parem 
d/.cosQX4-d/.cosQX''+ds"'.cosQX"'-f- etc. = 0 
Tractando eodem modo omnia reliqua elementa d2, atque summando, 
nanciscimur 
THEOREMA PRIMUM. 
Integrale f dscos QX per totam corporis superficiem extensum fit = 0. 
Generalius eodem modo invenitur, integrale 
/(Teos QX+PcosQF+Fcos QZ)ds 
evanescere, si T, U, V resp. designent functiones rationales solarum y, z so 
larum x, z solarumque x, y. 
4. 
Quum volumina partium cylindri a plano nostro usque ad puncta P', P", P " 
etc resp. sint ==d2.(F—a), d2.(a?"—a), d2.{x”—a) etc., pars voluminis cor 
poris ea, quae intra cylindrum sita est, erit 
= —xd 2 -f- x"d 2 — x"'d 2 etc. 
= ds.o/cos QX'+d/.<2?"cos QX"ds”. x"cos QX'"-f- etc. 
unde summando pro omnibus d2 obtinemus 
THEOREMA SECUNDUM. . 
Volumen integrum corporis exprimitur per integrale fds .xcos QX per totam 
superficiem extensum. 
Manifesto idem volumen etiam per fds.y cos QY vel per fds. z cos QZ 
exprimere licebit. 
5. 
Concipiatur iam primo cylinder totus materia uniformiter densa repletus, 
videamusque quantam singula eius elementa attractionem in punctum M exer-
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.