212
ANALYSIS. NACHLASS.
is. 13]
m
[5.]
Observatio
Med. inter letv / 2 —1 , / 1
Med. inter 1 et \J[2\J2 — 2) V 2
Theorema.
8 2 m
TF'
zz-\-
dm
dz
, ss
* ~ ( s'
1 m 3
= 0
' ss ]
m 3 J
1
in -
2 p'
m" —
6p r p'
2p"
pp
P*
p l
p*
n ff
2 p
ZZ ... r
Y + *yp p
Z £
~P
F
4-ül r-
= 0]
2 p"
zz W*'
p
zz-j- 2p'z —
4
r 7? =
0
c\ f t
2(]
6 q’ a'
ZZ
a
zz-1- 2q'z-\-
4
? </ =
0