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emote ABSTRACT :

Hyperspectral data (0.4 - 2.5 pm reflectance data at 0.01 pm resolution) are
ods of considered for both surface and aircraft data sets representing soils,
vegetation, and other common surfaces. Both types of data are well described
by 20-30 spectral shapes, although minerals may require a larger number due to

ormal, sharp absorption features at the longer wavelengths. This suggests that, in
contrast with research studies, operational applications do not require 200 or

e more spectral measurements at 0.0l pm resolution to obtain the useful
information in reflectance data. Comparison of surface and aircraft
observations shows that the types of shapes are similar, except for known
atmospheric water vapor features in the aircraft spectra. It thus should be
possible to estimate water vapor corrections in remotely sensed reflectance

Barn, data using relatively broad band (0.04um) spectral observations.
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RS 1. INTRODUCTION

nse to Recent advances in instrumentation, combined with interest in global
environmental assessment, have prompted the development of high spectral
resolution sensors which provide imagery with large numbers of spectral bands.

omass, The AVIRIS instrument (Vane, 1987) is a good example, obtaining data in 224

“tance spectral bands in the range 0.4-2.5 um for an image swath more than 600 pixels

wide. This discussion follows closely that of the previous meeting of this

symposium (Price, 1991), applying a newer methodology which has been developed
liurnal to address the expansion of spectra in basis functions (Price, 1993) when the
e number of such functions becomes relatively large, i.e. > 15. We first review
the description by spectral basis functions, then apply the formalism to
collections of surface/laboratory spectra, then to AVIRIS imagery, and then

irough X
7 describe the relationship between the two types of spectra, where the
systemmatic difference (atmospheric water vapor) is readily identified.
tenoid
2. DESCRIPTION OF HYPERSPECTRAL DATA BY BASIS FUNCTIONS
leaves
I a a a a,
et il X)) = (Xl’ Xy, .,xn) represent a measured spectrum for the set of n
on and wavelength values X = (Al, AZ’ A3, .A.An), with superscript a denoting the
; individual sample. Throughout we shall work with reflectance spectra, i. e.
Varlet- the ratio of reflected to incident radiation, as this eliminates effects of
ns and local illumination conditions and facilitates comparison of spectral
collections from many laboratories. For remote sensing applications the

illumination source is usually the sun. We shall describe visible to near

infrared spectra (0.4 to 2.5 um) by a set of spectral basis functions:
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where the basis functions ¢(A1, Az, A3, ...An) are spectral shapes, as definegd leavirn
Feliin
from statistical analysis of a collection of spectra, and the coefficients §* getind
i R
are wavelength integrals over specific band limits for the original o
measurements x . Each basis function ?; has an associated spectral interval shaug
: 3 : : Ciy incr
[Ai(min), Ai(max)] representing the domain of integration for determining the ;giuzz
coefficients Si' Thus each @ has essentially unit value in its spectral
. . S The cr
interval (more precisely has mean value of 1.0 in this interval), then co; iy
decreases according to the degree of wavelength correlation in the ensemble of Letppe
measured spectra. The expansion represents successive approximations to the
original spectra. Evidently the number of basis functions M which is required
to describe the x° to within very small residuals must be much less than the E
spectral dimensionality n, or else the expansion is not useful. In this
section we describe first the definition and properties of the expansion,
where the formalism for obtaining a set of basis functions ¢ by a single set where
of computations has been described in Price, 1993. the re
pm and
2.1 Definition and Properties of the Expansion obsery
requir
From inspection we know that most visible to near infrared reflectance spectra labora
vary in a relatively smooth fashion, implying that correlations exist between measur
measurements at nearby wavelengths. Thus a measurement in a limited spectral error
labora
range provides information about values over a interval. Let 6x§ be the nearly
difference between a measured spectrum and the sum through term i of the have b
. a @ : 5 lower
expansion, and Si be the average of 6xi over the interval [Ai(mln), Ai(max)} s A
A. (max)
s$ - B (max)h e j - §%7 dA (@2) 3. AP
1 i A. (min)
L When ¢
ey % set as
At the beginning le = X. Because the value of Si is correlated with the satell
value of éx over a wider range, we define the basis function @, by SPEChL
1 sedime
recent
RO Sy A o 98 ke A3) like t
= S = for de
N o A
where the brackets represent an ensemble average, e. g. < x > = 1/N ek &0 appros
a=1 few ot
From the definition of S, the normalization of ¢ is severaz
were 1
1 Ai(max) s vapor
[X. (max) -, (min) ] P B These
i 1 Ai(mln) analys
. (max) collec
1 i 2 detect
EE IR ) <8x. 8. > /< (Si> ShdAs =1 (4)
LA4 i A; (min) commur
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o so that @ has a mean value of one within the integration interval. At each

iteration level i the residual vector Sx? is approximated by 5x3 = Sz pi(A),
i

o7
. Then the procedure moves to §x,,,. From the
+1 g i+l

definition 6%, and all higher order residuals have the value zero somewhere

as defined leaving a new residual 6xi

cients S?
. within the wavelength interval d).. Thus successive residuals 6xi pass

through zero at more and more wavelength values as the order of the expansion

interval 2

rining the increases, and the magnitude of the residuals f(&x) d)\ decreases.
Illustrations of basis functions may be found in Price, 1990 and 1992.

tral

abs The criterion for terminating the selection of spectral bands is based on the
comparison of the residuals with the noise present in the ensemble of spectra.

nsemble of :
Let percent error E be defined by

1S to the

s required M

than the E(M) = 100% - < J (x - ). si (pi)z AN s/ f (xz) X > (5)

this i=1

1sion,

ngle set where the integral extends over the wavelength range of interest, excluding
the regions of strong water vapor absorption in the atmosphere at 1.35 to 1.47
um and 1.81 to 2.02 um, since these are not usable for airborne and satellite
observations. For terminating the expansion in basis functions we generally
require E(M) < 0.01%, or less for high signal to noise data, as, for example

Ice spectra laboratory spectra. This value 0.0l% corresponds to the noise level at a

't between measurement signal to noise ratio of 100:1, e. g. to a mean square reflectance

| spectral error of 0.2% at 20% reflectance. However while some collections of
laboratory and field reflectance spectra are relatively noisy, others are

> the nearly free of random variations at the 0.0lpm scale. Also some data sets

" the have higher noise at the upper and lower ranges of the observed spectrum and
lower noise in the midrange (0.6-1.3um). Thus a simple condition on residuals

A, (max)] : g i 5

i is not sufficient to guarantee that all spectral features are described.
(2] 3. APPLICATION TO SURFACE AND LABORATORY SPECTRA

When carrying out statistical processing one must utilize as general a data

- set as possible in order to include variability reasonably expected in

satellite or aircraft data. For this analysis a number of collections of
spectra have been studied, including soils, vegetation, and igneous and
sedimentary rocks. Many of these data sets have become available only
recently. The first two data sets do not span the full range 0.40-2.50 pm
(3) like the others, but they are the most complete spectral data sets available
for describing conventional agriculture. We describe the data sets briefly:

N a 1. Agricultural crops. This collection (Biehl, et al., 1984) contains
Z 4 approximately 1400 field spectra from soybeans, corn, and winter wheat, with a
e few observations of sunflowers and alfalfa and bare soil, taken throughout
several growing seasons. In the era of these measurements field spectrometers
were less advanced. The useable interval was 0.50-2.31 pm, with the water
vapor intervals (1.35-1.47 and 1.80-2.02 pm ) deleted due to low signal.

These spectra have been discussed previously (Price, 1990, 1992). During this
analysis it was found by comparison with vegetation spectra from the other
collections that some data from 1978 were corrupted by drift of one of the two
=1 (4) detectors due to temperature changes. (C. Daughtry and L. Biehl, private
communication, 1992). Elimination of these spectra left a total of 1276.

o4
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2. Soils, principally from the United States (Stoner, et al., 1980). These
564 spectra represent soil samples obtained by the U. S. Department of
Agriculture’s Soil Conservation Service, plus a few from foreign countries.
Laboratory spectra were measured with soils at field capacity, which tends to
reduce spectral variability. The measurement range was 0.55-2.32 pum.

3. Selected vegetation species. These and subsequent spectra were obtained
for the interval 0.4-2.5 um. The 597 laboratory spectra represent four
species (Pinus coulteri - coulter pine, Ceanothus crassifolius Torr. -
ceanothus, Salvia mellifera Greene. - black sage, and Adenostoma fasciculatum
Hook & Arn. - chamise) in a variety of modes - leaves, stems, flowers, fruits,
needles, etc, under varying conditions of fresh/drying/dead. The spectra were
originally obtained in order to assess potential moisture status determination
methods (Cohen, 1991a, 1991b, 1991c)

4. Spectral diversity (Satterwhite and Henley, 1991). This collection of 285
samples is the best single spectral survey for a variety of surfaces,
including trees, shrubs, grasses, soils, and rocks. Both field and laboratory
spectra are included, with emphasis on spectra from arid and semiarid
environments. The collection is too varied to be summarized here.

5. Vegetation. These 24 laboratory spectra, of high quality but
undocumented, represent mainly leaves of trees and bushes: sassafras, locust,
red oak, yew, poplar, etc. (D. Krohn, private communication, 1991)

6. Water. Two spectra for sea water and lake water are included in the 5S
spectral code (Tanre et al., 1990).

7 Sedimentary rocks. These 160 laboratory spectra from sedimentary rocks in
the western U. S. have been documented for potential geologic applications
(Lang, et al., 1990) Many of the identified absorption bands fall in the
regions which we exclude due to atmospheric water vapor absorption.

Table 1 presents 19 recommended bands for characterizing the seven spectral
collections, where water vapor regions are excluded, as are the regions

0.4-0.55pum and 2.31-2.50 pm, based on the limitations of the LARS data.

Table 1. Recommended bands for the seven spectral collections (um)

0.55-0.60 0.76-0.79 15201228 2.03-2.09

0.61-0.65 0.80-0.93 1.29-1.34 2.10=216

0.66-0.68 0.94-1.02 1.48-1.55 YA 5y 4

0.68-0.71 0 i s 1562170 2232734

G- 72:-0.75 1.14-1.19 P 80
These 19 spectral bands describe the ensemble very well, in the sense that E
is reduced to a value of 0.004%. When the full range 0.40 - 2.5 um is

considered we must eliminate data sets 1 and 2 (LARS spectra), which do not
describe the short and long wavelength regions. For the full spectral domain
we find that 22 spectral bands are sufficient to describe the ensemble, with a
residual of E = 0.003%. Thus we conclude that approximately 20 spectral

intervals are sufficient to describe data sets 1-7, representing commonly
observed materials such as soils, vegetation and rocks, at least to the extent
that the available data sets are representative. The addition of minerals and

man made materials (not described here) introduces considerably more localized
spectral variability, and many more bands are required. Whether most mineral
types occur frequently at large enough scale to be seen in satellite data is
unknown, but may be examined through the study of AVIRIS data.
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4. APPLICATION TO AVIRIS IMAGERY

Twenty eight AVIRIS scenes were selected using the quick look data at the Jet
Propulsion Laboratory. They were transformed to apparent reflectance by
dividing by the solar constant. The description of spectra in terms of
reflectance as opposed to radiance greatly equalizes the wavelength

obtained dependence. However it increases the effect of noise.

four

Table 2 lists the data sets used, and the scene type. The selection largely
spans the natural variability represented in the AVIRIS data sets, with the
exception of clouds. The two spruce forest scenes (920616B and 920615B) are
for overlapping areas, as was discovered only during image processing.

sciculatum
CS., Eruiites
bectra were

cermination

Table 2. AVIRIS Data Scenes and Surface Types
Elon of 285 Flight Run Scene Catalog name type of scene
laboratory 9206024 9 8 Moffett Field suburb, shallow water
s 9208268 3 2 Maricopa farm agriculture
920828B 1] 1 Los Alamos geology, town
920827B 2 5 Rodgers Dry Lake geology
5 921119B 9 8 Tampa Bay city, water
2y et 920603B 2 8 Cuprite geology
920826B 5 it Camp Pendleton water, military base
) 920615B % 5 Harvard Forest forest
1 the 58 920612B 2 ) Indian Pines agriculture, forest
920531C 6 i Death Valley geology
; 920603B 14 3 Cima volcanic field geology
Cy ?OCkS = 920708B i 2 Gainesville, FL lake, vegetation
sz 9208198 2 1 Denver suburb, agriculture
in the 920828B 2 5) San Juan Mtns snow, geology
9206024 6 2 Jasper Ridge suburb, vegetation
. 9208268 4 1 Fort Huachuca a.f.base, geology
SHECte 9206168 2 1 Spruce forest forest, clear cuts
e 9208208 6 ik Pleasant Grove agriculture
ata. 921117D 2 0 Jackson, TN agriculture, forest
9211198 5 4 Tampa Bay island, shallow water
9208268 6 2 San Joaquin agriculture
920531C 2 i Owens Valley geology
920820B 7 i Dunnigan, CA agriculture
9208198 10 4 San Berdardino agriculture
920708B 5 I: Gainesville, FL town, vegetation
920621C 2 i Blackhawk Island ag, forest, water
920615B 8 I Spruce forest forest, clear cuts
9208208 8 3 Davis, Webster agriculture, town
se that E
lz Since 28 AVIRIS images represent 4 gigabytes of data an efficient analysis
n do not

ral domain
ble, with a
geral
mmonly

the extent
inerals and
e localized
st mineral
e data is

strategy was needed.

First a scene showing considerable variability in
surface types (Moffet Field) was analyzed.
(spectral intervals) described E to within 0.1%.
scenes (every 100th pixel) was analyzed.

It was found that 9 variables
Then
Finally, the basis function

a 1% sample of the 28

expansion to level 20 was subtracted out from each scene to select "bad"

Pixels, with the worst 1% in terms of residuals being saved from each.
1% sample, so that the significance of poorly
Even this requires only

these were added to the original

described spectra was multiplied by a factor of 50.
to describe the AVIRIS signal very well, as

approximately 20 basis functions

illustrated in table 3.

Then
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Table 3. Variables Required to Meet Varying Accuracies estiwz
pm wWida

Accuracy # variables # variables # variables streng
(100-E) Moffet field 1% sample 1% sample +1% bad that ti
(1 scene) (28 scenes) (28 scenes) yields

the ex

90% 1k 1 1 proced:
99% 3 3 4 region
99.9% 9 8 12 vapor
99.95% - 15 19 the £
99.96% - 20 23 select

The recommended spectral bands are presented in table 4.

Table 4. Recommended bands for the 28 AVIRIS scenes (um)

0.40-0.44 0.75-0.85 7800 10571 71 2.26-2 .31
0.48-0.55 0.90-0.93 189231 028 135971 .99 2. 01-2947 L
0.60-0.68 0.97-0.99 1£:29-1:81 2.07-2.08 2.48-2.50 §§
0.69-0.70 0.99-1.08 1.43-1.48 2.09-2".16 =
0.72=0.74 1,k1-3.16 1.50-1.56 2:21-2.24 é?
Finally, each of the coefficient images (Si) for each of the 28 scenes was E;
studied visually. Small variance images (i>23) still showed signals at a
level of a few tenths of a percent. Possible explanations include instrument
noise, spectral misregistration, broad atmospheric variations between images
(aerosols), and true scene to scene variability. Little or no evidence was
found for isolated surface types with extraordinary spectral features such as
minerals.
5. COMPARISON OF SURFACE AND AVIRIS SPECTRA: THE EFFECT OF THE ATMOSPHERE
Figure
There exists a systematic difference between the shapes described by the basis compar
functions for surface/laboratory spectra, and those derived from AVIRIS data. 0.9,
This difference is due to water vapor absorption features in the AVIRIS absorp
spectra. The sample sizes for the data sets are disproportionate, consisting highly
of a few thousands of surface spectra, and almost 10 million AVIRIS spectra.
Therefore we have used all the surface spectra plus a sample of the AVIRIS
spectra, with a larger number of AVIRIS spectra because these have not been 6. CON
corrected for atmospheric absorption or solar zenith angle, and thus have
lower "effective" reflectances. By combining these data sets, with the From e
regions of stromg water absorption (defined previously) omitted, we find that AVIRIS
the weak absorption features in the AVIRIS spectrum represent the third most define
important shape variable (basis function) in the ensemble. However since our Thus i
goal is to invert AVIRIS spectra to obtain spectra having the same shapes as recomm
surface spectra, we select spectral intervals which are suitable for effect
describing both types, then identify a spectral band which specifies the
atmospheric effect. Thus using 11 bands at (0.40-0.49, 0.50-0.70, 0.71-0.73,
0 7400835 8 OF O =0 Il e o 0231 34 = Al A8 10054, e 1L ¥5 S 107750 2. 03200 4 2150, 368 7. REF
and 2.41-2.50um), we can describe both surface and AVIRIS spectra very well
except in the regions of strong water vapor absorption. Are these 11 broad el el
band intervals sufficient to provide a reasonable estimate of reflectance in
regions where atmospheric water vapor causes a difference from ground values, Car
as is required for estimation of atmospheric water vapor, and for possible Tot
identification of surface types? By calculation on the surface ensemble we Sen
may compare this approach with the Continuum Interpolated Band Ratio (CIBR) Spe

and the Narrow/Wide (N/W) algorithms, as discussed in Carriere and Conel
(1993). The CIBR method averages spectral values at 0.88 um and 1.10 pm to
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estimate the value at 0.94 pm, while the N/W method takes the ratio of a 0.03
um wide band to a 0.07 pm wide band centered on 0.94um to estimate the
strength of atmospheric absorption. By analysis of the surface data we find
that the 11 relatively broad bands describe this region fairly well: The CIBR
vields a root mean square error at 0.94 of 1.3%, the N/W an error of .6%, and
the expansion in basis functions an error of 1.2%. Thus we conclude that the
procedure used here yields a reasonable estimate of surface reflectance in
regions of moderate water vapor absorption. For measurement of the water
vapor effect we add a spectral channel at 1.12-1.15 pm. Figure 1 illustrates
the first basis function derived by using 11 surface basis functions, then
selecting the interval 1.12-1.15um as the observation band.

1145

140155
Ll
e
=
B0 Sen
a
=
<

5 i | /VjV\
0.0+ U \/ .. \ W]
05 + : b ;
0.0 0.5 1.0 162 2.0 28

WAVELENGTH
Figure 1. Basis function describing atmospheric attenuation of AVIRIS data as
compared to surface spectra. Spectral band is 1.12-1.15um, while peaks at
0.94, 1.38 and 1.95 are due to spectral correlations. The regions of strong
absorption are unsatisfactory for water vapor estimation because they are also
highly variable (also due to water) in the ground spectra.

6. CONCLUSION

From examination of approximately 3000 laboratory and field spectra and 28
AVIRIS scenes it appears that approximately 20-25 measurements are adequate to
define the spectral variability of most natural surfaces, excepting minerals.
Thus improvement of the Thematic Mapper, in terms of spectral bands, is
recommended. It also appears possible to simplify treatment of atmospheric
effects for comparing remotely sensed spectra with a spectral library.
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