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Detection of subpixel woody features in simulated SPOT imagery
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ABSTRACT: A method for detecting small wood
in size from hedgerows to strips or patches
ly detected all subpixel woody features larg

1 INTRODUGTION

In Britain, changes in farming practices since the
1940s have resulted in tree, pond, and hedgerow remov-
als, larger field sizes, and less frequent crop rota-
tions (Body 1982, Sturrock & Cathie 1980) . Although
tree and hedge removals are small land cover changes,
they are significant landscape and habitat changes.
These changes which decrease habitat diversity affect
animal and bird populations. Studies have shown that
birds and mammals utilize diverse landscape elements
(Pollard & Relton 1970, Wegner & Merriam 1979) and
that their distributions are related to the shape,
size, and spatial arrangement of these landscape ele-
ments (Forman & Godron 1981, Helliwell 1976).

Monitoring and quantifying agricultural change is
necessary for effective land use Planning and wildlife
habitat management. Computer-assisted methods using
remotely sensed data could provide timely monitoring
of changes in woody vegetation which affect scenic
beauty and wildlife.

Since linear woody features are often subpixel tar-
gets or features smaller than the pixel size of the
image, pixels containing these features are usually
mixed pixels or pixels containing two or more land
cover classes. Because the spectral values of mixed
pixels containing woody features frequently do not
correspond to the spectral values of woody vegetation,
conventional multispectral classification techniques
which operate on single pixels are problematic and re-
Peatedly result in mixed pixels being placed in con-
stituent or extraneous classes. A method for detecting
subpixel woody features in digital imagery was devel-
oped. Unlike conventional classification techniques,
this method incorporates information about ad jacent
classes and mixture phenomena at the individual pixel
level.

2 DATA AND STUDY SITE

As the method developed is concerned with detecting
small landscape features, it was appropriate to use
digital imagery of a high spatial resolution. Since
SPOT data was not available when the project was be-
gun, simulated SPOT data was acquired for the project.

In 1984, the National Remote Sensing Centre (NRSC)
in Farnborough, England organized a campaign to in-
vestigate the usefulness of SPOT imagery prior to its
availability. Simulated SPOT data was collected over
a wide variety of sites in the United Kingdom in order
to test a number of applications (NRSC 1985). This im-
agery was also sold to the public and, subsequently,
a scene was acquired for this project. Of the 39 test
sites imaged, the Winchester data flown on 6 July 1984
was selected because it is representative of agricul-
tural lands in lowland Britain and because it contains
numercus linear woody features.

A subscene of the Winchester image was then selected

y features in digital imagery was developed. Woody features, ranging
several trees wide, were tested. The classification method correct-
er than hedgerows and identified about 20 Percent of the hedges.

for use in developing and testing algorithms. This
subscene, approximately 17 sq km on the ground, is lo-
cated southeast of the city of Winchester in a gently
rolling area of mixed farmland and woodland.
Panchromatic photography, commissioned by the Plan-
ning Depaftment of the Hampshire County Council, was
used to locate and map woody vegetation within the
subscene. This photography was flown by Meridian Air-
maps Limited on the evening of 28 July 1984 at 1:10000
scale. Four categories of woody vegetation were
mapped: hedgerows, single trees, single rows of trees,
and denser woody features. Specific species were not
identified. The airphoto interpretation was checked by
surveying parts of the study site on the ground.

2.1 Comparison of real and simulated SPOT imagery

The simulated imagery was flown by Hunting Geology and
Geophysics Limited with a Daedalus DS-1268 multispec-
tral scanner. Daedalus channels 3 through 7 were used
singly or in combination to simulate the SPOT channels
(Hunting Geology and Geophysics Ltd. 1984). The wave-
lengths of these simulations do not exactly match
those of the real SPOT bands. The effect of these dif-
ferences is not known.

Table 1. Comparison of SPOT and simulated SPOT chan-
nels.

SPOT Simulated SPOT
wavelengths Daedalus wavelengths
Channel in microns channels in microns
S1 0.50 - 0.59 3 0.52 - 0.60
S2 0.615 - 0.68 L4t5 0.605 - 0.69
S3 0.79 - 0.89 7 0.76 - 0.90
P 0.51 - 0.73 3+lA+5+6 0.52 - 0.75

The spatial resolutions of real and simulated SPOT
data are the same: 20m in the three multispectral
bands and 10m in the panchromatic band at nadir view~
ing.

Since the simulated SPOT imagery was flown by high-
altitude aircraft, it is less map-accurate than sat-
ellite imagery. Distortions in aircraft imagery are
caused by changes in aircraft altitude and angular
orientation during scanning. Since spatial fidelity is
not important in this pro ject and since techniques for
geometric correction inevitably involve interpolation
which further "mixes" the information in the pixels,
there has been no attempt to geometrically correct the
imagery.

Another difference between real and simulated SPOT
data is the sun angle. The simulated imagery was col-
lected at about mid-day and, consequently, shadows are
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narrow or absent. Real SPOT imagery of the United
Kingdom would be recorded in the morning and would
contain larger shadows, which are expected to be use-
ful in detecting hedgerows.

2.2 Preprocessing of simulated imagery

The preprocessing of the simulated imagery included
two image rectification techniques applied to the raw
data recorded by the Daedalus scanner (Hunting Geology
and Geophysics Ltd. 1984). One was a linear scaling
technique by which the swath was scaled to fit a map.
The second technique was an S-bend correction which
rectified distortions caused by the radial rotation of
the scan mirror. This latter correction is unnecessary
in data from push-broom scanners like those on board
the SPOT-1 satellite.

During the course of the project, it was discovered
that the three simulated multispectral bands were not
Properly registered to one another. Whether this prob-
lem is due to preprocessing or subsequent processing
is presently unknown. The misregistration was verified
by two methods:

1. By locating the edges of obvious features in
printed arrays of DN values and comparing the loca-
tions in each spectral band.

2. By visually comparing registered and unregistered
colour-composite images on adjacent display terminals.

This misregistration was corrected by shifting band
1 one pixel to the west and by shifting band 3 one
pixel to the east.

3 PREVIOUS METHODS FOR CLASSIFYING MIXED PIXELS

In the literature, there are two types of methods for
classifying mixed pixels. In the first type, mixed
Pixels are treated as whole entities and are assigned
to a single class. It is assumed that the class as-
signment corresponds to the dominant constituent
class. Textural (Haralick 1979) or contextual informa-
tion (Gurney & Towmshend 1983) may be incorporated in-
to the classification procedure.

The second type of classification method for han-
dling mixed pixels involves pixel splitting, the proe-
ess of breaking a pixel into its component parts and
classifying the fractions. Pixel splitting methods are
based on the premise that the gray tone represented by
a digital number of a pixel is proportional to the
gray tones of the constituent classes. Four statisti-
cal procedures for pixel splitting have been found in
the literature: weighted averaging (Marsh et al. 1980),
linear regression (Nalepka et al. 1972, Richardson &
Weigand 1977), maximum likelihood classification
(Chittineni 1981, Horwitz et al. 1971), and linear
diseriminant analysis (Marsh et al. 1980). The first
three of these procedures have been or could easily be
used in the three-class case, the usual condition Tor
pixels containing narrow woody features.

For a number of reasons, the methods already devel-
oped seemed inappropriate for this project. Treating
mixed pixels as whole entities was not appropriate be-
cause linear woody features are seldom the dominant
constituent class. The variances of the major classes
in the subscene are significantly different; the var-
lance of woody vegetation is significantly larger than
the variance of any other class. Therefore, it seemed
unsuitable to use either weighted averaging which does
not take variance into consideration or linear dis-
criminant analysis which requires the variances of all
classes to be equal. The linear regression method was
eliminated since development of the model requires
specific information regarding the proportions of com-
ponent parts within mixed pixels. The small sizes of
the features of interest and the geometric distortions
in the image make collection of this specific informa-
tion difficult. Finally, the maximum likelihood method
seemed inappropriate because it is the most computa=-
tionally demanding of the known methods. Since various
Postprocessing algorithms are planned, it seemed de-
sirable to conserve computer time.
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Filgure 1. Classification zones in a hypothetical
feature space.
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Figure 2. Three parts of the 13 x 3 window.

4 NEW METHOD FOR CLASSIFYING SUBPIXEL WOODY FEATURES

The classification method developed for this pro ject
discriminates selected subdivisions of feature space.
Figure 1 illustrates the subdivisions of interest in
a hypothetical feature space which was constructed us-
ing two spectral channels and five pixels from each of
three classes. If the triangles and squares represent
two crops or any two land covers Present in adjacent
fields, pixels containing the boundary between the
fields are expected to fall between the line Jjoining
Points B and C and the line Joining points E and F.
If, however, the boundary between the fields includes
a linear woody feature and if the circles represent
woody vegetation, pixels containing this boundary are
more likely to fall within the polygon circumscribed
by points A, B, C, and D. Locating a pixel in one of
these two zones is the basis for classifying it in ei-
ther the class of normal boundaries or the class of
small woody features.

Nine major classes present in the study site were
plotted in the two-dimensional feature spaces whose
axes are pairs of the multispectral bands. The pan-
chromatic data was not used. Visual inspection of the
Plots revealed that bands 1 and 2 are highly correlat-
ed and that the greatest separation between classes
occurs when bands 2 and 3 are used. Therefore, only
bands 2 and 3 were included in subsequent Processing;
band 1 was eliminated due to its redundancy.

A training set for woody vegetation, consisting of
80 pixels, was selected from a large patch of decidu-~
ous woodland in the subscene and was used in all fea-
ture-space calculations.

A 13 x 3 window was employed to locate its central
Pixels in the two-channel feature space. As shown in
Figure 2, the window was divided into three parts: two
training sets for the adjacent fields and a central
region expected to contain mixed pixels. These two
training sets and the training set for woody vegeta-
tion were used to construet a feature space for each
window. The central pixels in the window were then
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Figure 3. Feature space created from window data.

classified by their locations in this space.

Examples of this classification method are shown in

Figures 3-5. In these figures, Squares represent woody
vegetation, triangles pointing downward and triangles
pointing upward represent the two training sets de-
rived from the window, and circles represent the cen-
tral pixels in the window. The circle with the dot in-
dicates the pixel at the exact centre of the window.
L and S refer to the line and sample of the pixel in
the centre. In each example, the circles to the left
of or below the line are placed in the class of small
woody features.

5 RESULTS AND DISCUSSION

Twenty subpixel woody features and two simple field
boundaries were selected from the study site for the
initial testing of the method. The woody features
greatly vary in width and length and include hedge-
rows, a hedge with one large tree, single rows of
trees, and strips or Patches two or more trees wide.
All of the woody features selected were found to be
incorrectly detected by a standard nearest neighbor
classification. Most of the features were also unable
to be either detected or adequately interpreted by
visual inspection of a colour-composite image.

The classification method developed in this project
correctly classified all subpixel woody features larg-
er than hedgerows, properly discriminated the simple
field boundaries, and identified about 20 percent of
the hedges. Further testing is in progress.

Use of the panchromatic band will be incorporated
into future classification schemes and is expected to
improve classification accuracy for hedgerows.

Figures 3-5 illustrate the three possible ways the
training sets may be situated in feature space. ?he
roughly triangular shape, suggested by the training
sets in Figure 3, is the most typical arrangement.
When adjacent farm fields contain the same land cover,
the clusters of their training sets overlap as in Fig-
ure 4, In both of these cases, pixels containing small
woody features are likely to be pulled toward tpe
woodland cluster. However, when the three training
clusters are positioned along a straight line, as in
Figure 5, pixels containing small woody features are
less likely to be pulled past the middle cluster into
the zone designating woody features. This last case
only occurred once in the 22 features tested.

Before this method can be completely operational, a
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Figure 4. Feature space created from window data.
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Figure 5. Feature space created from window data.

few practical problems must be addressed. The most
important problem is determining an optimal size for
the window. The 13 x 3 window is frequently too big
to fit into the small corners of farm fields. This
inability to fit also contributes to the creation of
anomalies in the training sets. Four anomalous train-
ing pixels are shown in Figure 6; the correct posi-
tion of the division line in this feature space is
also shown. A smaller window, like a 9 x 1 window,
would fit into smaller fields and would create fewer
anomalies. A smaller window would also be more effi-
cient since it would less frequently use the same
pixels in its calculations.

The automated use of this method could provide an
effective means of mapping and monitoring the pres-
ence of subpixel woody features in satellite imagery.
Also, the use of this method could Provide the basis
for determining specific quantitative information of
use to ecologists and resource managers.

TIB Hannover



=086 S = 154

A
A
4 oog o
A o
o$s
vvV
% i o m M e e
BAND 2

Figure 6. Feature space containing four anomalous
training pixels.
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