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ABSTRACT

When it is necessary to determine the precision of a certain instrument B, devoted to point position measurement for
instance, but not necessarily, one way is to measure a certain number of points with B as well as with another instru-
ment A, whose precision is known. Forming the differences between the B and A measurements, it is possible to calcu-
late B precision by means of the dispersion of the differentiated quantities. The paper investigates how the precision of
A influences the estimation of the precision of B. Even if the subject is basic, it is not easy to find in textbooks; for this
reason the paper could have a certain interest for teaching purposes.

1. INTRODUCTION

Let's assume there are » points in the space and two in-
struments A and B able to measure their positions. The
instrument called A has well known characteristics, while
B has an unknown precision, which we want to determine
by comparison between the measurements given by it and
the ones given by A. This scheme is very common and
applies, for instance, to the estimation of the precision of
a DPW (Digital Photogrammetric Workstation) by means
of the comparison with an analytical stereoplotter; the
same scheme could also be applied to the study of the
performances of a quick GPS mode, based on static
measurements.

Our discussion will be limited to only one component,
and will assume that the instruments have always the
same precision, regardless of the position of the measured
point. The measurement of the i-th point by the A instru-
ment can be represented by a normal random variable (rv
starting from now)

X =N[z,oj 1)

and the measurement of the B instrument can be repre-
sented by the following normal rv

X,=N[%,0} )

where the x with the small line above it represents true
values, while , and , represent the measured posi-
tions. The variance of A is supposed to be known, while
the variance of B is unknown. The equation (1) and (2)
also contains the hypothesis that both the instruments
have no biases; this hypothesis should be checked in an
actual case, but it doesn't damage the general value of our
discussion: it only makes the job simpler.

It is possible to form the differences between the meas-
urements given by the two instruments:

8, =Xp— 4 G)

which are formally extracted by » different but identical
normal rvs (we will follow the convention of indicating
one rv with an uppercase letter and extractions from it
with the same letter, lowercased)

A, =N[0, cl+c}

The n differences can also be thought of as multiple ex-
tractions from a unique rv that will be called

A=N[0,5}+0} 4)

and this allows the estimation of the dispersion of
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:
\=0,+
g (5)
B

which implies, passing from the true quantities to the es-
timated ones, that it is possible to give an estimation of
the variance of the instrument B in the following way

St=S2- ®)

The equations (5) and (6) are always true, independently

of the value of , and this seems to contradict our
common-sense, which suggests that the estimation of
the precision of the instrument B can be effectively
carried out by comparison with the measurements
given by A only if the latter is better than the former
or, more formally, if the following inequality holds

c, <

The point is that (6) is an estimation; it is always true, but
this only means that the mean values of the rvs involved
coincide, that is

E[$}]=E[s o2 )

Moreover the latter equality doesn't guarantee anything
about the concentration of the rv around its mean

value. In other words, it is necessary to investigate the
goodness of the single estimation

and it will be demonstrated that it depends on the value of

2. DISTRIBUTIONAL RESULTS

Let's consider again the estimator . It is not too diffi-
cult to find how it is distributed. Indeed we have

2 n AZ
el iyt ®

2 2
C,+0;

because the terms under the sum are in reality normal
standardised rvs, as it can be easily demonstrated by the
following equalities

n

2 %
RO RO a0 g

2
n

i=1

Now, it is well known that the sum of » independent
normal standardised rvs equals a chi square rv with » de-
grees of freedom, and this brings us to (8).

From relation (8) it is immediately deduced that

which represents the first significant result of our discus-
sion: the distribution of depends on the value of the
variance of A. An immediate way to investigate this de-
pendence formally and quantitatively is to consider the
two most important descriptors of a probability distribu-
tion: mean value and variance. Remembering that for the
chi square rv the following equalities hold

E[xf]=n

VAR[x}]=

whose demonstration can be found in every good statis-
tics textbook, we have
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The first one simply confirms what has been observed
about (6) and (7); it also shows that our formal develop-
ment is correct; the second highlights the dependence of

the variance of in respect of . In other words:
is a correct estimator of the variance of B because its

mean value coincides with , but the goodness of the

estimation depends inversely on

Another well known way of understanding the properties
of an estimator is to study its confidence interval at a
certain confidence level . From (8) it is easily obtain-
able

2
Son

2 o
2 ZSX.n;l—a/Z P_l
GA+GB

X;;a/Z S

where x.,, and x.,,, are two real numbers with the
following properties

a
174 [‘LX:;u/Z][X: 25‘

I [077(:_ 1-<x/2] | X: ) Lt

The confidence intervals for the estimated variance and
standard deviation of B are easily calculated

2 2 2 2
2 G, +GB 2 2 2 C +GB 2
Xnia/j2 =0 5 Sa¥pcS 5 i =07
n n
2 2 2 2
2 GA +GB 2 2 GA +GB
\/Xn;u/z 5 =0 SSB = Xni1-a/2 o 3

The role played by the size of the variance of the instru-
ment A is also shown in this case: the bigger it is, the
larger the confidence interval becomes. So it confirms the

rule that high values of mean low quality estimation

of the variance of B. In the next section a practical exam-
ple will clarify the orders of magnitude of the phenome-
non.

3. PRACTICAL EXAMPLE AND CONCLUSIONS

For a research job devoted to the determination of the
precision of a DPW at different resolutions, the position
of 25 control points has been measured with an analytical
stereoplotter. The operator has completed not only one
cycle of orientation and point measurements, but twelve
cycles, so to determine the precision of the analytical
measurements. For the X component the standard devia-
tion was o, =6. cm; having twelve independent meas-
urements, mean values have been calculated for each
point

1 ]
2 e Ai

124

J=

Their estimated standard deviation of the analytically
measured coordinates is o, =G%/-ﬁ=l.9 cm. The

DPW measurements of the X component, at the resolu-
tion of 300 dpi, have shown an estimated standard devia-

tion s, =21. cm; this will be assumed as the true value
for the instrument B (¢, =21. ).

The following picture shows the confidence interval

width of the estimated standard deviation as a func-
tion of ;the valueof  and » are kept fixed; the con-

fidence level is a = 0.0

Length of the confidence interval of Sy as a function of 5,

28

261 / 4
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The interval width obviously increases with  ; there is

a lower limit, corresponding to the value ¢ , , that can
be improved only by increasing the number of the points,
n; this limit is unfortunately high in our case, because the
standard deviation estimation improves very slowly, in
respect to the number of the measurements.
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Therefore, when planning an experimental job, it is nec-
essary to tune carefully, in a combined approach, the pre-
cision of the control instruments and the number of the
measurements.
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