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ABSTRACT

Since a few years digital fotocameras have widely spread on the market, principally because of their price, quality
image improvement and easy of use. In order to extract from these digital images reliable 3D informations regarding
objects position and dimension, both the exact knowledge about perspective and dimensional relations between image
and scene, and the knowledge about the geometric distortions parameters are needed.

Therefore, the aim of this work was to develope, in the ambit of the Photogrammetry course, an alternative calibration
method and to implement it as teaching software, by which the parameters of the major forms of geometric distortions,
Le. radial, decentering and thin-prism, can be estimated. Basically, the proposed method was realized putting together
the Tsai-Lenz and Weng-Cohen-Herniou calibration algorithms and applying the Levenberg-Marquardt algorithm as
non linear optimization procedure. The software was developed in Matlab programming language, because its code can
be to structured in text-like scripts, allowing therefore to share and to understand a program in easier way compared to
software written, fo instance, in Fortran or C.

The method has been implemented in such a way to allow a full camera calibration or a computation of the exterior
orientation parameters only, using inner orientation and distortion parameters determined from previous full calibration.
This approach can be useful if only an estimate of new targets positions is required, in which the inner and distortion

parameters are already given.

1. INTRODUCTION

The camera calibration, typical issue in computer
vision, is becoming today very important also in digital
photogrammetry applications, where dimensional mea-
surements are required. The main aspect of camera ca-
libration is concerned with the estimate of internal
parameters of the camera, that define the perspective
and dimensional relations between 3D points in the
scene and corresponding image coordinates. Another
important aspect of calibration regards the determi-
nation of geometrical relations between camera and
scene through estimate of external parameters, and the
correction of geometrical lens distortions.

On the other hand, digital non-metric fotocameras are
widely spreading on the market since a few years,
principally because of their price, quality image impro-
vement and easy of use. At the present the image
quality of amateur digital cameras is surely not at the
same level of film cameras in terms of resolution (300
dpi vs 2500 dpi with a 35mm film), image dimension
(640 x 480 pixels), colours spectrum (24 bits, rather
than continous) and limited dynamic range of the CCD,
in lights and shadows capturing. As rule of thumb,
increasing the dimension and the number of CCD cells
the image quality is improved, but the final price is

augmented as well. Despite the exposed drawbacks, the
easy and quickly download of images on a computer
and the perspective of improvements in image quality
lead to a reasonable scenario in next future, where digi-
tal cameras will substitute the film ones in the most
common applications.

On the ground of these considerations, we have deve-
loped an alternative calibration method of digital non-
metric camera, in order to employ this kind of relative
expensive device in digital photogrammetry applica-
tions.

Following the classification presented in [4], we can
identify three main groups for the existing camera cali-
bration techniques:

1) Direct Nonlinear Minimization: in this category
the parameters estimation involves using an itera-
tive algorithm, which tries to minimize residual
errors of some equations. The adopted camera
model can be very general, to cover many kind of
distortions, but it requires a good initial guess of
the parameters because the procedure is iterative.
Furthermore including the estimate of lens distor-
tions, the procedure may be unstable, the correla-
tion between external and distortions parameters
can lead to divergence or false solutions.
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Closed-Form Solution: parameters values are com-
puted directly through a noniterative algorithm
based on a closed-form solution. It is a fast proce-
dure but, in general, camera distortion parameters
cannot be incorporated in the algorithm.

3) Two-Step Method: this technique involves a direct
solution for most of the calibration parameters and
some iterative solution for others. An example is
the Tsai-Lenz calibration algorithm, where howe-
ver only the radial distortion is taken into account.

From a short analysis of these calibration methods, one
can conclude that noniterative procedures involve clo-
sed form solution of linear equations without estima-
ting the distortions parameters, while iterative methods
allow to evaluate lens distortion through nonlinear opti-
mization procedures, but they require a good initial
guess of the parameters.

In order to solve this trade-off, we addressed the came-
ra calibration problem adopting a two-steps method,
based on a combination of the Tsai-Lenz [3] and
Cohen-Herniou [4] calibration techniques. In the first
step we use the noniterative Tsai-Lenz algorithm to
directly compute a closed-form solution for all external
and some major internal parameters of a distortion free
camera model. In the second step we apply a nonlinear
optimization based on a camera model that takes into
account various kind of geometrical lens distortions.
Because an iterative algorithm is involved, the solution
of the first step is used as initial guess.

The main advantages of our method are as follows:

1) Unlike the Weng-Cohen-Herniou method, in the
first step we use the well known Tsai-Lenz calibra-
tion algorithm, in order to get an initial guess of
internal and external parameters. Being nonitera-
tive, this algorithm is fast and easy to implement;

2) Compared to Tsai method, in the second step we
improve the estimate of al/l camera parameters,

3) Through the application of a nonlinear optimiza-
tion, we can consider various kind of lens distor-
tion rather than just the radial one;

The method has been implemented in such a way to
allow a full camera calibration or a computation of the
exterior orientation parameters only, using inner orien-
tation and distortion parameters determined from a
previous full calibration. This approach can be useful if
only an estimate of new targets positions is required, in
which the inner and distortion parameters are already
given.

In the following sections a detailed description of the
proposed method, so as a short overview of the imple-
mented calibration software, will be presented.

2. THE CAMERA MODEL

In every camera calibration procedure, a certain set of

reference systems are required to define the coordinates
of target points and of corresponding projections onto

the image. In our case we adopted the following set

(see:Figwl):

B 2O, KXo 'Yy, i Zy)itarget  fixed | 3D reference
system, with origin at point Oy,; in case of coplanar
target points the X,, and Y,, axes are choosen in
such a way to set Z,,=0.

= 2O Xe, Yo, Z) is the 3D camera fixed reference
system; its origin coincides with the optical center
of the camera and the Z. axis coincides with the
optical axis. The (X, Y., Z.) axes form a right-
hand triplet.

= 2,v, 2D image reference system centered at O’,
the intersection point between optical axis and
image plane 7 (the CCD surface). This plane is as-
sumed to be parallel to the (X,, Y.) plane and at a
distance f to the origin O., where f represents the
effective focal length of the camera.

= %, 2D image reference system where the points
coordinates are computed according to row and
column number of corresponding pixel for the dis-
crete image in the frame memory. The origin is lo-
cated at the upper left corner of the image plane .
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“Fig. T: The adopted reference systems

Adopting a pin-hole camera model, the relationships
between the 3D coordinates of target points and the
corresponding 2D image coordinates can be defined as
follows:

1) Rototraslation, transforming (X., Yw, Zy) coor-
dinates of target point P in Z,,, in the camera coor-
dinates (XY e Z. )+

5, & S
Y, |=R=|Y, |+T M
Z - i

where R is the rotation matrix defined by roll, pitch
and yaw angles, while T is the traslation vector
denoted by (T, Ty, T,).
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2) Perspective trasformation, that gives the undistor-
ted position of P onto the image plane.

X
o= * 2
S Ze 2
faae
V=
7

c

3) Change of image reference system in order to rela-
te the metric image coordinates (u,v) of point P
with the corresponding pixel coordinates (r,c) in
the digitized image.

= (€))

where (r,,co) denotes the pixel position of the
principal point O’, while s, and s, are determined
by the CCD cells dimension as follows:

1
S =
Ar
s S “4)
N Nce
Nfc
where

Ar, Ac center to center distance between adja-
cent sensor elements of the CCD array,
in the Y and X direction respectively;

Ncc  number of sensor elements (columns of
CCD array) in the horizontal direction

(Y axis);

Nfc  number of pixels in a line as sampled by
the frame-grabber;

s image scale factor, this is an additional
uncertainty parameter introduced to take
into account various source of error in
the CCD array sampling, performed by
the frame-grabber [3].

As regards the lens distortion, in our camera model we
considered three major kind of lens distortions namely:
radial, decentering and thin-prism. However, the cali-
bration procedure was implemented in such a way to
incorporate eventually further geometrical distortions,
although this lead to a more complex camera model
and requires an higher computational effort.

The corresponding set of distortion parameters that we
have adopted, is reported below:

1) Radial distortion:

8, =k *u@® +v*) +k, *u(u’® +v?)? a
8, =k *v(u® +v?)+k, *v(u® +v?)?
2) Decentering distortion:

8.0 =D *(Bu’ +v¥)+2p, xuy

8,0 =2p,uv+ p, *v(u’ +3v?)

3) Thin-prism distortion:

8, =5’ +v?)

2 @
3, =5, +v*)

4) Total distortion: when all the above distortions are
present, the effective distortion can be modeled by
addition of the corresponding expressions [3].
Therefore combining (5), (6), (7) we obtain the
total amount of lens distortions along the u and v
axes,

&=k *uln* +v) +k, *u(u® +v?)? + p,
* (3u’ +v*)+2p, *uv+5,(u’ +v?)
ESW=k1*v(uz+vz)+k2*v(uz+v2)2 (8)
+2puv+ p, *(u’ +3v2)+s2(u2 +v?)
Taking into account the distortion along the % and v
axes, the relationship between distortion free image

coordinates (u,v) and its corresponding pixel locations
(r,c) becomes

U0 7= ik

- €)
v+9d, (u,v)= g

where 3,(u,v), 8,(u,v) can represent the total distortion
or a combination of the above mentioned factors, ac-
cording to the purposes of the calibration.

Note that the lens distortions are computed according
to image coordinates (u,v) that are unknown.

Now, following the procedure presented by [5], if we
introduce the new variables (u’,v’), that represent the
distorted location of image projections of target points
onto a normalized image plane (Z.=1),

e u+9o,(u,v) e 2T
¥ K
V+0,(1v). . c~¢,

4 '

(10)
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and replace in (10) the arguments of modeled distor-
tions by u’,v’, we obtain the relationship between undi-
storted unknown image coordinates (u,v) and the dis-
torted, but known, image coordinates (u’,v’) :

. u'+d , (u',v')

/ 1D
v

—=v'+3,.(u',v'")

/8

The complete camera model is reported in (12) at the
bottom of the page, where one can note that the full
expression is linear respect to the considered distortion
coefficients: this will simplify their estimation.

3. THE CALIBRATION ALGORITHM

Denoting with m the set of internal and external undi-
stortion parameters

m=(r07c07f:SsTx7Ty:T;:a7B’y)

(where a,3 and y denote the three indipendent parame-
ters of rotation matrix R) and with d the set of distor-
tion parameters

d=(k;,ky, P> D2551555)

in order to perform a camera calibration we have to de-
termine the optimal estimate of parameters vectors m
and d, given a set of visible target points (Xw;, Ywi »
Z,;) and the set of corresponding pixel locations (r’;,
¢’;). Due to the noise and the lens distortions that affect
the image-points positions, the optimal estimate means
computing the set of calibration parameters (m*,d*)
which minimize the following merit function:

F(Qo,m*,d*) = min F(Q0,m,d) (13)

where QO and ® represent the two sets of target and
corresponding image points respectively.

In our case, we considered as objective function F the
sum of squared discrepancy between the image coordi-

nates (r;, ¢;), computed by features extraction algo-
rithm, and the corresponding coordinates [ri(m,d),
ci(m,d)] as derived by 3D coordinates of target points
(Xw,i> Ywis Zw;) and the parameters (m,d), defining the
camera model:

Z {[r,(m,d)—r,]2 +[c,.(m,d)—c,]2} (14)

i=1

As the calibration parameters are related by nonlinear
relationship (12), the minimization of (14) has to be
performed through a nonlinear optimization algorithm,
which will converge provided that a good initial guess
of the parameters themselves is available. In order to
meet these requirements, we approached the calibration
process by combining the procedures proposed in [3]
and [5], as previously mentioned in section 1.

The main structure is based on two-steps method like
in [5], which can be summarized as follows:

1) First consider a distortion free camera model(&=0).
To this purpose only image central points are used
because they are less affected by lens distortions;

2) Compute vector m, which minimizes F(Q, ®, m, d)
with 4 fixed:

min F(Q,0,m,d) (15)

3) Then compute vector d, which minimizes F(Q, o,
m, d) with m fixed as current estimate:

mdinF(Q,o),m,d) (16)

4) Go back to step 2), using as fixed value of d the
solution of minimization in previous step 3). The
loop is performed up to certain number of itera-
tions, and the procedure terminates.

Referring to this method, we have introduced following
modifications:

Pii T Tiad s Eavtiu tit s
r5X o rp X b ool ok iy

r’=r0+fu[

L= iy I Xy ¥ In Y bl il
72 ) v
P el b L+

+p, (3u’2+v'2 )+ 5, (u'2 e ]

j - f, [klu'(u'2 )+ hu' @+ ) +2p,u'y

(12)

]— i [klv'(Lt'2+v’2 )+ kv @+ ) +2pu'y

+ pz(u'z—*{%v'2 )+ 52(u'2+v'2 )]

261
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Non-linear optimization of vector m=(1y,co,f,5,R,T)
at step 2) is accomplished by iterative Levenberg-
Marquardt algorithm [4]. As initial guess for m, at
first iteration we use the value m’, resulted from
step 1), while in following iterations we use the
value m’’, obtained as output of step 2) in previous
loop.

a)

b) In the second part of the procedure, where all the
image points are used to estimate also the distor-
tion parameters, we perform again the non-linear
estimate of m through L-M algorithm, while for
vector d we carrie out a linear estimate based on
solution of (12), with (k;, ks, p1, p2, S1, S2) as
unknows.

c) After about four loops, all camera parameters are
estimated together simultaneously by non-linear L-
M algorithm, obtaining the optimal vector estima-
tes mey and dgp,.

The overall scheme of the adopted procedure is showed
in Fig. 2 and 3.

We have adopted the Levenberg-Marquardt iterative
algorithm principally because it moves smoothly bet-
ween two others widely used minimization methods,
the Steepest Descent and the Hessian, combining them
into one simple equation. In this way the algorithm can
converge to true minimum, switching at each iteration
between the two methods on the base of a changing
threshold value A [4]. We retain that this property can
be succesfully used in a calibration procedure, since we
deal with initial guesses about which we don’t know
how close to the true solution they are.

Such “switch” behavior can therefore resolve the pro-
blem of the “goodness” of initial estimates in mini-
mizing the objective function F.

Calibration of EXTERNAL parameters—l

3D control points(coplanar or nocoplanar): & set
2D co rresponding image points: w set

g

all image points

]

Initial linear estimate of m = (R, T)
—> Tsai-Lenz

&
Non-linear optimization ot m = ( R, T)

— Levenberg-Marquardt
Internal and distortion parameters are fixed

L T

Ropt » IIlopt

1g. 2 : Flowchart of the estimation procedure of
external parameters only.

Calibration of ALL parameters

¥

3D control points (coplanar or nocoplanar): § set
2D co rresponding image points: w set

g

d=0
only image central points

£

Linear estimate of m = (fs, R, T) = Tsai-Lenz
g w
d=0

Non-linear optimization ot m = (g, cg, f, 5, R, T)
—> Levenberg-Marquardt

|

Calibration of all parameters
all image points used

¥

Linear estimate of d |
m fixed

d o
d fixed
Previous estimate of m as initial guess

Non-linear estimate of m
— Levenberg-Marquardt

Y
4/ END ? 5%

oy

Non-linear optimization of m and d together
—> Levenberg-Marquardt

¥

m”, d* as good initial guess

¥

Mgt » Dopt

Fig. 3: Flowchart of calibration procedure of all
parameters.

As reported in Fig. 2 and 3, our calibration procedure
can be applied both to a set of coplanar (Z,=0) and
non-coplanar target points, so as it can be used to per-
form a full camera calibration or to evaluate only exter-
nal parameters. In the last case the internal and distor-
tion parameters of previous calibration are employed.
Since the initial linear estimate of vector m is based on
Tsai-Lenz method, we defer the reader to references for
more detailed explanations on it, while we provide a
short overview on the application of Levenberg-
Marquardt algorithm and on the linear estimate of dis-
tortion parameters.

Basically a maximum likelihood estimate of the model
parameters is obtained minimizing the quantity
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(@)= Z[y' x"a)} (17)

called the ‘“chi-square”, where y; are the measured
values, y(x;,a) are the values derived by model and
vector parameters a=[a,,a,,....,ayv], while o; denote the
stdev of errors on y; values (if unknown they can be all
set to 1). In our case this chi square quantity is replaced
by (14), in which (r;,c;) are the measured values while
(r;,c’;) are the image coordinates computed by camera
model with lens distortions.

The gradient of x> with respect to the parameters a has
following components

_X__ 22 [)/ (xl 2 a)] (xi 5 a)
a, 2a, as)
k =1,2,....,M

while additional partial derivative components are
(neglecting second derivative):

)@(X,-;a)} o

=2
8ak6a, ,Z: c; { 8ak oa,
k=12,....M

Removing the factors of 2 from (18) and (19) by
defining

B, =220
e 397

Oy = s (20)
2 0a,0q,

the equations of Steepest Descent and Hessian minimi-
zation procedures, derived in terms of these factors,
can be combined in a unique expression (22) if we de-
fine a new matrix o’ of partial derivative of ¥ [4]):

g =a;(1+2)
(J#k)

. (21)
Ay =,

M '
zakiaai =B, 22)
=1

where 83a; are the increments that added to the current
approximation, give us the next one. When A is very
large, the matrix o’ becomes diagonally dominant, so
(22) goes over to be identical to Steepest Descent mini-
mization formula, while as A approaches zero, the equ-
ation (22) goes over the Hessian matrix formula. Given
an initial estimate for the set of parameters a, the steps
of Marquardt algorithm are as follows:

a) Compute x*(a);

b) Choose a modest value for A, say A=0.001;

¢) Solve (22) for 6a and evaluate Xz(a + 8a);

d) Ifx’(a+ 8a)> x’(a), increase A, i.e. by a factor
of 10, and go back to c);

e) If y’(a + 8a)<y*(a), decrease A, ie. by a
factor of 10, update the current solution a «— a
+ da, and go back to c).

As regards the linear estimate of distortion parameters,
this step is accomplished by least square solution of
linear system Ax = b resulting from (8), (9) and (12).
Given the coordinates of N control points, both in the
world reference system Z,, and in the image plane refe-
rence system X,, , A becomes the 2n x 6 matrix, con-
taining the coefficients of distortion parameters, and b
the 2n-dimensional vector of known terms, as reported
below at the bottom of the page:

F sl ) o) 3. ) ; & ' 2
S,y +v; ) u(u, +v, )2 (Bu, +V12) 2u,v, (u12+v1 ) 0
s v v i O v e i 23)
kl P o ok rlle +rl")/\w +rlaZ ‘+T _r’
k, R e
AP ERE T S g
i=| s b=lc +5, | = R -c, (24)
P, A W
Sl .......................
5,
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U, =| ——

where (25)
' (CI ; CO J
Y, =
1,

are the measured distorted image coordinates of the N
control points, as derived by egde detection algorithm.
Obviously in case we consider a camera model with a
reduced set of distortion parameters, the corresponding
columns in matrix A have to be eliminated.

4. THE CALIBRATION SOFTWARE GUI

In order to make more easy and understandable the
calibration procedure from teaching and user final
point of view, we have provided the algorithm with a
Graphic User Interface. It was implemented in Matlab,
because this is a development environment best suited
for mathematical applications and it don’t requires a
specific knowledge about programming language like
Fortran, C or C++. Of course Matlab has own syntax,
anyway a complex software can be structured through
scripts readable with a common text editor, making
therefore easy to manage and modify the software
itself.

An example of the GUI is depicted in Fig. 5 showing
the DATA window, where all input parameters can be
set up, namely: CCD camera construction features
(menu Camera), number of used target planes (up to 6,
menu 7arget) and the calibration mode (menu Option),
listing the distortion parameters taken into account.

The user can view the results of calibration process
both in numeric form, through the PARAMETERS
window selecting the param submenu (Fig.6), and in
graphical form selecting the submenu result. The aim
of using such graphic windows should allow the user to
assess in easier way the quality and accuracy of the
calibration.

S. TEST AND RESULTS

In order to evaluate the overall accuracy of our method,
we have performed a calibration test using a target
plane with 48 black squares on white background, each
having lateral dimension of 50mm and horizontal and
vertical spacing of 150mm (Fig. 7). The vertices of
these squares were employed as control points.

To this aim the Canny edge detection algorithm [1] was
applied to the target squares, then the corresponding
lines were recovered from resulted edge points by
cubic splines interpolation. Finally the image coordi-
nates of the vertices were determined as the points of
edge lines intersections.

For the test we used a Kodak DCS-410 professional
digital camera, employing a full-frame CCD image
measuring 1524x1012 pixels, with a lateral dimension
of CCD cells of 9um. The target plane, located at a

distance of = 2m from the camera, was taken from dif.
ferent points of view (up to 6 positions) in order to get
a larger spatial information about the perspective tra.
sformations experienced by control points. Employmg
an objective of 24mm the focal length was set up to
infinity and the diagfram to 11.

Considering each time a different combination of djs.
tortion parameters, we have therefore performed seve.
ral calibrations, which results are listed in tables 1, 2
and 3. The values of internal and distortion parameters
are reported in table 1, according to 4 calibration test
(rad2 means the estimate of both radial distortion coef-
ficients). Instead, in table 2 (stdr,stdc) represent the
errors along rows (r) and columns (c) in X , between
image points positions, as derived by features extrac-
tion procedure, and the image coordinates of same
points, as computed by the model. As both position are
affected by geometrical distortions of the camera, the
discrepancy can be regarded as an estimate of the noise
superimposed on the image. The following four para-
meters (mean X, mean Y,, std X,, std Y,,) represent
the mean and the stdev of the position errors along X,,
and Y, axes in reference system X,,. These values are
calculated by differences between measured 3D coor-
dinates of control points and backprojected positions
on the target of corresponding image points, which
locations were corrected through the estimated camera
model. Finally, in the same way, the means and stdev
of position errors between coordinates points in the
camera reference system Z. were computed, which
results are listed in table 3.

Table 1: calibration results about internal and
distortion parameters

Internal 1ad +dec | rad+thin | rad2 +dec

parameters + thin
Ij 521.13 504.79 517.34
Cy 768.25 757.54 758.51
1 23205 2393 23.97
S 099923 | €.99925 0.99991

Distortion

parameters
k 0.12650 | (.12597 0.16914
ko 0 0 -0.697 56
P1 0.002332 0 0.001899
™ -03.001526 0 -0.001651
St 0 0.003053 0.000648
$2 0 -0.001948 | -0.001753

Table 2: position errors of backprojected control points

rad + dec | rad + thin | rad2 + dec + thin
std-r 0.209 0.200 0.206
std-c 0.247 0.248 (0.244
mean X, 0.185 0.185 0.242
mean Y, 0.232 0.232 ¢.322
std X, 0.130 0.120 (0.216
std Y., 0.161 0.162 0. 257
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Table 3: Relative position errors of backprojected
control points in reference system Ze.

rad +dec | rad + thin | rad2 + dec + thin
mean X. | 1715669 | 115647 1/1176%
mean Y, | 1/13202 | 113172 10403
std X, | 122032 | 121990 1412542
stdY, | L/18618 | 118533 1/11295

As pointed out in tables 2 and 3, beside of performing a
calibration with less or more distortion parameters, one
should choose the camera model according to lower
backprojection errors, which are represented by (mean
X., meanYy) and (sid X, std Y,,) or, equivalently, by
corresponding relative values computed in I, while
(stdr, stdc) can give a feeling of superimposed noise.

CONCLUSIONS

Today, the camera calibration is becoming even more
an important issue in the digital photogrammetry field.
In the same time non-metric photocameras are widely
spreading on the market, due their relative low price
and improvement of image quality, that is sufficient for
image processing. In order to put in touch these two
fields, in the ambit of the Photogrammetry course we
have developed an alternative calibration method, in
which the Tsai-Lenz and Cohen-Herniou algorithms
were properly revised. The procedure was then imple-
mented as teaching software, in which a graphic inter-
face helps the user for data input, evaluation of calibra-
tion parameters results and assessement of its accuracy.
The proposed algorithm is able to taken into account
various combinations of lens distortions, allowing the
user to choose the best distortion model according to
the application field and calibration requirements.

Fig. 5 : DATA window for calibration parameters input
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Fig. 6 : The PARAMETERS window showing the
calibration results.
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