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ABSTRACT

In this paper, uncertainty of spatial features including linear features, areal features and volumetric features in a three-dimensional (3D)
vector-based geographical information system (GIS) is studied. Existing uncertainty models for 3D spatial features are divided into two
directions: (a) a confidence region model derived from a statistical approach and (b) a reliability model based on a simulation technique.
The confidence region model for a spatial feature could provide an area inside which the ‘true’ location of the spatial feature is with a
predefined probability. In the reliability model, uncertainty was measured by a discrepant area, which is formed by the measured
location and the ‘true’ location of a spatial feature and hence was determined in terms of the measured location and the ‘true’ location of
the spatial feature in a mathematical expression. Based on an assumption of error of the spatial feature, uncertainty of the spatial
feature could be simulated repeatedly and the average discrepant area would be obtained. However, it is known that simulation is quite
time-consuming and cannot provide a precise solution. Hence, this study further proposes the development an analytical model on the
reliability model on spatial features in a 3D GIS. The expected value of the discrepant area of the spatial feature is expressed as a
multiple integral by a statistical approach. The authors proposed to solve the multiple integral based on a numerical integration, resulting
in an approximate solution of the expected discrepant area. This uncertainty model is also compared with an earlier simulation model.

1. INTRODUCTION

A GIS is defined as a software package, which provides users
with a tool to input, store, analyze, retrieve and transform
geographical data (Cassettari 1993). It is now widely applied in
many different areas including military applications,
environmental studies and geological exploration. However,
geographical data in GIS is not error-free (Heuvelink 1998). The
market of GIS will be affected by evaluating uncertainty in GIS to
a certain extent.

Uncertainty in GIS may arise from data collection and input in
the first step to spatial analyses. Hence, there are many different
types of uncertainty in GIS (Burrough and McDonnell 1998). It is
virtually impossible to represent the world completely due to the
complexity of the geographical world. Some of the man-made
utilities such as water pipes and road networks can be
represented by points, lines and polygons while most natural
phenomena cannot (Burrough 1986). Differences between the
database contents and the phenomena they represent are
mainly due to the characteristic of phenomena. In addition,
measurement errors are introduced during data collection and
input and propagated through GIS operations.

There are different approaches to describe uncertainty of linear
features in two-dimensional GIS (Caspary and Scheuring 1992;
Dutton 1992; Stanfel and Stanfel 1993,1994; Shi 1994; Easa
1995; Shi and Liu 2000). However, little research exists in the
modeling of uncertainty in higher dimensional spatial features.
Shi (1997, 1998) derived a confidence region model for 3D and
N-dimensional linear features from strictly statistical approaches.
Later on, the reliability of 3D spatial features, including linear
features, areal features and volumetric features were studied by
a simulation technique (Shi and Cheung 1999).

Shi and Cheung (1999) earlier assessed the reliability of a 3D
spatial feature by calculating the discrepant area between the
measured location and the ‘true’ location of this spatial feature. It
was first assumed that nodal error was normally distributed. In
such simulation, the measured nodes of the spatial feature were
generated and the discrepant area was calculated. After the
simulation was repeated many times, the expected value and
the variance of the discrepant area for the linear feature (or the
discrepancy volume for the area or volumetric feature) were
calculated. On the other hand, Stanfel (1996) suggested that a
stochastic method could be used to calculate the expected
discrepant area in 2D GIS, mainly due to weakness of the
simulation technique such as time-consuming and unstable
results.

An analytical expression for the expected discrepant area (or
volume) is derived mathematically in this study. Theoretically, its
exact solution will be obtained automatically in GIS given the
measured location and the ‘true’ location of the spatial feature.
As a result GIS users will aware of the uncertainty of the spatial
feature from this indicator. However the analytical expression will
be expressed in terms of a multiple integral based on a
probability theory. This multiple integral is unable to be solved
analytically. This paper thus presents an analytical method with
a numerical solution to describe uncertainty of three-dimensional
spatial features in GIS.

In this paper, we focus on uncertainty model for a 3D spatial
feature in a vector-based GIS. Uncertainty of this spatial feature
will be determined by discrepancy between the measured
location and the ‘true’ location of the spatial feature. In Session
2, we will explain the discrepancy of spatial features including
linear features, areal features and volumetric features. Due to
the weakness of simulation technique (as stated above), we will
withdraw this technique in this paper and express the expected
discrepant value analytically and this mathematical expression is
also given in Session 2. A numerical integration given in Session
3 will be implemented in order to find the approximate solution
for the expected discrepant value. Finally, some experimental
studies will be conducted and their numerical results will be
compared with the simulation result from the previous simulation
model.

2. DISCREPANCY OF 3D SPATIAL FEATURES

Uncertainty of spatial features is measured by a discrepancy,
which is the difference between the measured location and the
‘true’ location of spatial features. From a statistical point of view,
this indicates that a mean of any variable X is close to its actual
value. Thus, in this study, the ‘true’ locations of the nodes of
spatial features refer to their mean locations.

For this study, the following two assumptions are made. First,
positional error of a node is within an error ellipsoid whose
center corresponds to the ‘true’ location (Stanfel and Stanfel
1994; Easa 1995). Second, the positional error of the nodes is
assumed to follow a normal distribution inherent to specific
measurement technologies (Stanfel and Stanfel 1993). The
authors will therefore model the positional error of spatial
features based on positional nodal error of the spatial features.
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2.1 DISCREPANCY OF A LINEAR FEATURE

A line segment has two nodes. Its discrepancy is defined as the
area whose boundaries are the measured linear feature and the
‘true’ linear feature. This area is shaded in Fig. 1.

(X1, y1, 21)

Measured line segment

(X2, y2, 22)

a (xt, iy, 1)

Figure 1. The discrepancy of a line segment

In Fig. 1, the solid line segment is the ‘true’ line segment joining
the ‘true’ locations of the two nodes (i, p, Hz) and (e, e,
Hz). The dashed line segment is the measured line segment
linking the two measured nodes (x1, y1, zt) and (x2, y2, 2). ay,
by and ¢, are parameters in Eq. 1, which is a mathematical
expression of the error ellipsoid for the node on the left-hand
side. Similarly, a,, b, and ¢, are parameters in Eq. 2, which is a
mathematical expression of the error ellipsoid for the node on
the right-hand side. The error ellipsoid is a confidence region for
the expected location of the node with a confidence coefficient of
(1-a) where 0< a < 1.

Error ellipsoid for node on the left-hand side

2 2 2
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where k = (-2 In (@) x (1 - pay® - Pan® - pn® + 201 Px1 2101 71)-
Pay is the correlation coefficient of x1’s error and y1’s error.
Similarly, pyi» and pa are the correlation coefficients of y1’s
error and z1’s error, and x1’s error and z1’s error respectively;

and sy, s,; and s, are standard derivations of x1’s, y1’s and
Z1's errors.

Error ellipsoid for node on the right-hand side
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where k = (-21In () X (1 - pey’ - pez’ - ez’ + 2PerPreprz).
Py is the correlation coefficient of x2’s error and y2's error.
Similarly, p,» and Prz are the correlation coefficients of y2's
error and 2’s error, and x2's error and 22’s error respectively;
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and se, Sy and sz are standard derivations of x2’s error, y2's
error and 22's error,

The shaded area in Fig. 1 is determined differently depending on
its case. Three possible cases exist: (a) the measured locations
of all nodes and their corresponding ‘true’ locations are on a flat
plane but the measured and the ‘true’ line segments do not
intersect; (b) the measured and the ‘true’ line segments
intersect; (c) neither case (a) or case (b) is a possibility.

In the first case, it is assumed that the measured locations and
the ‘true’ locations of all nodes should be on a flat plane and that
their two corresponding line segments should not intersect. In
such a situation, the shaded area can be denoted by area_quad
(x1, y1, 21, x2, y2, 22), which is a function of (x1, y1, z1) and
(%2, y2, 22), as shown in Eq. 3.

area_quad
=0.5" (the magnitude of (Ax B)-+the magnitude of (cxD))
where A= (X1t Y-, Z1-415)

B = (et tyetiyn, pz-fin)

C = (X1-te, Y1-iyp, 21-11)

D= (x2-pie, y2-p1yo, 22-112) and

A X Bis a vector product of A and B

and so on.

©3)

The second case is illustrated in Fig. 2 whereby the discrepancy
is shaded. The shaded area consists of two triangles whose
vertices are (x1, y1, 1), (tn, iy, pa) and (x12, y12, 212) for the
triangle on the left-hand side, and (x2, y2, 2), (ue, My, Uz) and
(x12, y12, z12) for the triangle on the right-hand side. (x12, y12,
Z12) is an intersecting point on the ‘true’ line segment and the
measured line segment. The discrepancy is denoted by
area_triangle which is a function of (x1, y1, z1), (x2, y2, 22), and
(x12, y12, 12). This shaded area is expressed in Eq. 4.

area_triangle
=0.5 * (the magnitude of (AxB')+the magnitude of (cxD)) “)
where A’ = (x1-pa, y1-py, Z1-1in)

B = (x12~p, y12-py1, 212-p15)

C = (0A2-pe, y12-pp, 212-11,) and

D= (XQ-;IQ, }/2*//}4, 22-it).

Measured line segment 2 M2 Hz2)

==~ {X12, Y12, Z12)

e
True line segment

(Ux1, Py, Pz1)

Figure 2. The discrepancy of a line segment forming two triangles

It is also possible that both the measured and the ‘true’ nodes
are neither on a ‘flat’ plane nor intersect. Under these
circumstances the shaded area cannot be obtained exactly. The
obscurity of the equation formed by the measured and ‘true’
nodes affects the discrepancy; the discrepancy cannot be readily
calculated. To simplify and quantify such a case, the
approximate area of the shaded region in Fig. 1 is described by
Eq. 3. Due to errors of the spatial feature’s nodes, the expected
discrepant area of the line segment is computed as per Eq. 5.

E(discrepancy)

= Jf(xL ¥1,24, X2, y2, z2) area _ quad dz2dy2adx2dz1dy1dx1
RUR,

+ jf(xL y1,21,x2,y2,z2) area _ triangle dz2dy2dx2dz1dy1dx1

AUR,

(6)
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where A; and R, are the regions of the two ellipsoids expressed
in Eq. 1 and Eq. 2 respectively; U is union of the two regions;
and fix1,y1,21,x2,y2,22) is a probability density function (pdf) of
normal distribution. The latter's mathematical expression is
shown below

f(xa,yl,z1,x2,y2, 22)

1 )
;1/)(1 Wi Y=y 2= X2~ 4ty Y24t 221, JE

by 1 22—,

T

where X is the covariance matrix of x1’s, y1’s, z1's, x2’s, y2's,
and Z2's errors.

Joining several line segments together yields a polyline, which is
a broad linear feature. The reliability of the linear feature is
measured by the discrepancy between the measured location
and the ‘true’ location of the linear feature. In this instance, the
linear feature only refers to an acyclic polyline.

The discrepancy between the measured location and the ‘true’
location of the linear feature is shown in Fig. 3. The solid linear
feature is the ‘true’ location of the linear feature and the dashed
linear feature is the measured location. The ‘true’ location is
connected by three ‘true’ nodes (ux, iy, ta), (e, Kp, Hz) and
(4w, s, Hz). The measured location is connected by three
measured nodes (x1, y1, 1), (x2, y2, 2) and (X3, ¥3, 28). The
shaded area in Fig. 3 represents the discrepancy between the
measured location and the ‘true’ location. As a result, the
expected discrepant area is presented in Eq. 7.

E(discrepanc y)

= [fxarea dz3dy3dx3 dz2dy2dx2dz1dy1dx1 @)
R,UR,UR,

where Ry, R; and R; are regions of the three ellipsoids for three
nodes of the linear feature; U is union of regions; fis a pdf of
normal distribution; and area is the shaded area in Fig. 3.

True linear feature
Z
(Uixs, Hya, Hza)

(b, By, i)

(1, y1, 1)

(Lx1, My1, Hz1)

Figure 3. The discrepancy of a linear feature

2.2 DISCREPANCY OF AN AREAL FEATURE

Areal features, as discussed in this paper, refer to polygons in
the digital database sense. Though the reliability of an areal
feature can be appraised by the discrepancy between the
measured location and the ‘true’ location of the areal feature, its
definition of discrepancy is distinct from that of linear features.
The discrepancy of the areal feature refers to a volume of the
area whose boundaries are the measured areal feature and the
‘true’ areal feature. According to the definition for linear features,
the discrepancy should be the surface area bounded by the
measured linear feature and the ‘true’ linear feature. Fig. 4 and
Fig. 5 illustrate this difference in conformity with respect to area
and volume.

True areal feature

Measured areal feature

Figure 4. The discrepancy of an areal feature defined by area

True areal feature

Measured areal feature

Figure 5. The discrepancy of an areal feature defined by volume

Fig. 4 relates to the discrepancy of the areal feature based on
area, and Fig. 5 relates to the discrepancy of the areal feature
based on volume. The solid and the dashed areal features are
the ‘true’ location and the measured location of the areal feature
respectively. Both the area of the shaded area in Fig. 4 and the
volume of the shaded area in Fig. 5 represent the discrepancy.
Since discrepancy is the difference between reality and users’
representation of reality, using the volume of the shaded area to
express the discrepancy of areal feature is satisfactory. For
instance, the expected discrepant area of an areal feature
containing three nodes can be given as follows.

E(discrepanc y)
= j f x volume dz3dy3dx3dz2dy2dx2dz1dy1dx1 8)

R,UR,UR,
where R, R, and R; are regions of the three ellipsoids for three
nodes of the areal feature; U is union of regions; fis a pdf of
normal distribution; and volume is the volume of the shaded
object in Fig. 5.

2.3 DISCREPANCY OF A VOLUMETRIC FEATURE

In a 3D GIS, another important element is volumetric features.
The difference between the measured location and the ‘true’
location of a volumetric feature is a measure of the reliability of
the volumetric feature. This discrepancy can be viewed as a
union of surfaces’ discrepancies. For example, a volumetric
feature contains four nodes and therefore four surfaces. For
each surface, its corresponding discrepancy is computed. The
discrepancy of the volumetric feature is computed by the union
of all of the surfaces’ discrepancies. The expected discrepancy
is illustrated in Eq. 9 whereby the volumetric feature consists of
four nodes.

E(discrepancy)
= jfx volumedz4dy4dx4dz3dy3adx3dz2dy2dx2dzidyldxi

9)
RUR,..A,

where Ry, R., R; and R, are regions of the four ellipsoids for four

nodes of the volumetric feature; U is union of regions; fis a pdf

of normal distribution; and volume is the union of the four

surfaces’ discrepancies.

This expected discrepancy might differ from that in the
dependence case. This could indicate that the covariance matrix
of fis not diagonal.

3. NUMERICAL INTEGRATION
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The discrepancy for spatial features can be mathematically
expressed by a multiple integral. However, it is known that
integrals may not have an exact solution. Moreover, there are no
standard procedures of finding the exact solution of the integral.
As a result, a traditional technique is unsatisfactory to solve this
problem in GIS.

Gaussian quadrature, a numerical integration technique,
approximates the integral of a function by integrating the linear
function that joins points of the function’s graph (Burden and
Faires 1993). In other words, the integral fg(x) dx is
approximated by ¥ w; g(x) where the nodes xi, xs, ..., X, and
coefficients wy, wa, ..., w, are chosen to minimize the expected
error between the integral and the approximation. This technique
can be modified in a straightforward manner for use in the
approximation of multiple integrals. This Gaussian quadrature is
implemented to calculate the multiple integral in Eq. 5, Eq. 7, Eq.
8 and Eq. 9.

4. RESULTS AND DISCUSSION

The analytical model for the uncertainty of spatial features is
applied to the example data of Shi and Cheung (1999). The two
expected nodes of the line segments are (0, 0, 0) and (1000, 0,
0). a, by, &1, &, b; and ¢, are 100ft, 196ft, 148ft, 30ft, 78ft and
90ft respectively. The covariance matrix, in the pdf of the
multivariate normal distribution f, is a 6x6 diagonal matrix with
nodes x1, y1, z1, x2, y2 and 2 and these nodal errors are
assumed to be independent. The confidence coefficient (1-@) is
0.95. The expected discrepant area of the line segment is
62145.0ft° (as shown in Table 1)

Table 1. The expected discrepant area of spatial features

feat i
B eature Analytical model boidat
Line 2
Fr 62145.0ft° 59344 11t 1.047
Linear 85553.6ft° 89036.11? 0.961
Areal 15200871.41t° 18570274.0ft° 0.819
Volumetric 37688986.2ft> 44339983 8ft° 0.849 1
i analytical result .
* Ratio = y

simulated result

For the polyline, the three expected nodes are (0, 0, 0), (500,
500, 707.1) and (1500, 500, 707.1). a;, by, ¢, &, by, ¢, a3, by
and cs are 100ft, 196ft, 148ft, 30ft, 78ft, 90ft, 100ft, 196ft and
148ft respectively. The covariance matrix in fis a 9x9 diagonal
matrix. The confidence coefficient (1-a) is 0.95. The expected
discrepant area of the line feature is 85553.6t. Using the three
nodes of the polyline for the areal feature results in an expected
discrepant area equal to 5209871 .4t>.

For the example of a volumetric feature, an additional node (to
the existing three) is considered. This addition now specifies a
volumetric feature. This additional node is (500, 707.1, 500), and
its error ellipsoid has parameters a, = 30ft, bs = 78ft and ¢, =
90ft. The expected discrepant area of the volumetric feature is
37688986 .2ft°.

In Table 1, the expected discrepant areas of the spatial features
are recorded for both the numerical integration and the
simulation techniques. The ratio from the analytical model to that
from the simulation model is in the range of 0.8 to 1.1. In an
ideal situation, this ratio should be 1. A ratio varying from 1 is
due to the approximation of the expected discrepancy for both
techniques (numerical integration and simulation techniques).
In the simulation model, the accuracy of the result depends on
the number of simulation. The larger the number of simulation,
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the higher the accuracy of the result. The accuracy of the
approximation in the analytical model is related to the number of
nodes chosen in the integral region. To a certain extent, the
oscillatory nature of the integral function affects the
approximation. In any case, the expected discrepant areas
calculated from the numerical integration and from the simulation
technique, are close to each other. Both techniques are valid.

The above four examples considered the discrepancy of the
spatial features when there is no correlation of nodal errors.

5. CONCLUSIONS

A newly developed analytical model to measure the uncertainty
of a spatial feature in 3D GIS was presented in this paper. The
uncertainty is determined by the ‘true’ location and the measured
location of the spatial feature. The discrepant area (or volume)
was used as a measure of the uncertainty. It was expressed as
a mathematical function of which the measured location and the
‘true’ location of the spatial feature were variables. Given the
measured location of the spatial feature, the discrepant area (or
volume) could be obtained and the derived result was the
discrepant area for this measured location. In general, the
measured location may be in the vicinity of the ‘true’ location.
Based on the assumption of error of a spatial feature, a number
of possible measured locations were considered in our proposed
model rather than one measured location of the spatial feature.
Therefore, the expected discrepant area was in the form of a
multiple integral. Since this multiple integral could be solved
analytically, the Gaussian quadrature, a numerical integration,
was implemented to provide an approximate solution for the
analytical model. The estimated expected discrepancy was
finally compared to the simulated solution.

In our previous uncertainty model for 3D spatial features, the
uncertainty model of 3D spatial features was studied using the
simulation technique. This simulation model was generated
some possible measured locations of a spatial feature based on
the same assumption of error of the spatial feature as stated in
this paper, and computed the average discrepant area (or
volume). In a mathematical point of view, there are a number of
infinite points inside a region. However, the simulation model
only sampled a certain number of the possible measured
location of the spatial feature instead of all possible measured
locations of the spatial feature. The accuracy of the expected
discrepant area (or volume) is question although more
simulations can provide a more precise result. Moreover, the
simulation model is quite time-consuming. Thus, we proposed
the analytical model by taking all possible measured locations of
the spatial feature into account, in order to provide the expected
discrepant area (or volume) with great accuracy in real time.

In this paper, an analytical model was provided to validate the
simulation model. The numerical results obtained from the
analytical model and the simulation results given in our previous
study can approximate a similar discrepant area (or volume).
However, the calculation for the numerical solution is much
faster than that for the simulated solution for the same problem.
Therefore, the numerical integration technique is considered the
preferred approach in studying the uncertainty of 3D spatial
features.
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