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ABSTRACT:

Image fusion deals with the integration of remote sensing images from various sensors, such as SAR and optical images, aiming at
achieving improved image information to better support improved image classification, monitoring and etc. The main goal of this
paper is to introduce an algorithm to fuse SAR and multi-spectral optical images based on complex wavelet. First, the theoretical
basis of complex wavelet is described together with its key properties (e.g. approximate shift invariance, good directional selectivity,
perfect reconstruction (PR),limited redundancy and efficient order-N computation). Secondly, the fusing algorithm based on complex
wavelet is proposed, which includes a method to de-noise SAR image and a new fusion rule based on modulus of complex wavelet
coefficients. Finally, experiment results show that the fusion method based on dual-tree complex wavelet transform (DT-CWT) is
remarkably better than that based on discrete wavelet transform (DWT).

1. INRTRODUCTION

SAR and optical remote sensing image fusion is aiming at
achieving improved image quality to better support improved
image classification, monitoring and etc. Fused image will
enhance reliability and speed of feature extraction, increase the
usage of the data sets, and extend remote sensing images’
application area. There have been a lot of research efforts on
image fusion, and many fusion methods have been proposed.
One of them, the fusion algorithm based on DWT, has been
canonized.

The advantages of wavelet are that it can analyze signal in time
domain and frequency domain respectively and the
multi-resolution analysis is similar with Human Vision System.
DWT in maximally decimated form established by Mallat (S G
Mallat, 1989) is widely used in image processing now, such as
image matching, image segmentation, image classification,
image fusion and so on. The best advantage of fusion based on
DWT is to conserve more spectral characteristics of the
multi-spectral image. So the fusion algorithm based on DWT is
widely used. But DWT has two main disadvantages (N.
Kingsbury, 1998a):
®  Lack of shift invariance. This means that small shifts in
the input signal can cause major variations in the
distribution of energy between wavelet coefficients at
different scales.
®  Poor directional selectivity for diagonal features, because
the wavelet features are separable and real.

Nick Kingsbury has introduced the dual-Tree complex wavelet

transform (DT-CWT), which has the following properties (N.

Kingsbury, 1998a):

®  Approximate shift invariance;

®  Good directional selectivity in 2-dimensions (2-D) with
Gabor-like filters also true for higher dimensionality:
m-D);

®  Perfect reconstruction (PR) using short linear-phase
filters;

®  Limited redundancy: independent of the number of scales:

2:1 for 1-D (2™ :1 for m-D);

®  Efficient order-N computation - only twice the simple
DWT for 1-D (2™ times for m-D).

DT-CWT has shown good performance in image restoration
and denoising (A. Jalobeanu , 2000; Nick Kingsbury, 1998b;
Peter de Rivaz, 2001), motion estimation (Julian Magarey,
1998), image classification (Serkan Hatipoglu, 1999), texture
analysis (Javier Portilla, 1999; N. Kingsbury, 1998; Serkan
Hatipoglu, 1999), image enhancement (Nick Kingsbury,
1998b), image matching (JIANG Han-ping , 2000).

In this paper, we proposed an SAR and optical image fusion
algorithm based on DT-CWT, and use a Radarsat-1 SAR image
and a SPOTS5 multi-spectral image to test the performance of
our algorithm.

2. THE DUAL-TREE COMPLEX WAVELET
TRANSFORM

It is well-known that the real biorthogonal wavelet transform
can provide PR and no redundancy, but it is lack of shift variant.
Then Kingsbury (Julian Magarey, 1998;N. Kingsbury, 1998a ;
Nick Kingsbury, 1998b; Serkan Hatipoglu, 1999) has
developed a dual-tree algorithm with a real biorthogonal
transform, and an approximate shift invariance can be obtained
by doubling the sampling rate at each scale, which is achieved
by computing two parallel subsampled wavelet trees
respectively.

For one dimension signal, we can compute two parallel wavelet
trees. There is one sample offset delay between two trees at
level 1, which is achieved by doubling all the sample rates. The
shift invariance is perfect at level 1, since the two trees are fully
decimated. To get uniform intervals between two trees beyond
level 1, there have to be half a sample delay. The term will be
satisfied using odd-length and even-length filters alternatively
from level to level in each tree. Because we use the decimated
form of a real discrete wavelet transform beyond level 1, the
shift invariance is approximate.

The transform algorithm is described as following.

TIB Hannover




At level 1, there is one sample offset between the trees.
(@), = (@’ *h’),, @), =(a"*g%,,
d}), =(a**g°),.., @)

(a;l)n =(a’ *h”)lrnl

>  Beyond level 1, there must be half a sample difference
between the trees.

(@), =(a) *h"),,

(a3"), = (a3 * 1),

@), = (@} *g .,
el o e

2n+l

The details d, and d, can be interpreted as the real and
imaginary parts of a complex process z=d,+id, - The

essential property of this transform is that the magnitude of the
step response is approximately invariant with the input shift,
while only the phase varies rapidly. (A. Jalobeanu , 2000)

Reconstruction is performed independently in each tree, and the
results are averaged to obtain 4°at level 1, for symmetry
between the two trees.
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For 2-D signal, we can filter separately along columns and then
rows by the way like 1-D. Kingsbury figured out in (Nick
Kingsbury, 1998a) that, to represent fully a real 2-D signal, we
must filter with complex conjugates of the column and row
filters. So it gives 4:1 redundancy in the transform.
Furthermore, it remains computationally efficient, since
actually it is close to a classical real 2-D wavelet transform at
each scale in one tree, and the discrete transform can be
implemented by a ladder filter structure.

The quad-tree transform is designed to be, as much as possible,
translation invariant. It means that if we decide to keep only the
details or the approximation of a given scale, removing all
other scales, shifting the input image only produces a shift of
the reconstructed filtered image, without aliasing. (A.
Jalobeanu , 2000)

The most important property of CWT is that it can separate
more directions than the real wavelet transform. The 2-D CWT
can provide six subimages in two adjacent spectral quadrants at
each level, which are oriented at angles of +15°, +45° =+
75°. The strong orientation occurs because the complex filters
are asymmetry responses. They can separate positive

frequencies from negative ones vertically and horizontally.
Figure 1 shows the transform of an isotropic synthetic image at
level 3, which also contains details at different scales.

Figure 1. Isotropic test image containing various scale
information (left), magnitude of its complex wavelet transform
at level 3 showing both directional and scaling properties
(right)

The DT-CWT is a good solution to image fusion because of its
advantages. First, it is approximate shift invariant. If the input
signal shifts a few samples, the fused image will be
reconstructed without aliasing,” which is useful to the not
strictly registered images. Secondly, it can separate positive and
negative frequencies and provide 6 subimages with different
directions at each scale. So the details of DT-CWT can
conserve more detail information than DWT. In addition, PR,
limited redundancy and high computation efficiency make it
suitable for image fusion execution.

3. SARAND OPTICAL IMAGE FUSION BASED ON
DT-CWT

3.1 Speckle Denoising

The SAR image is produced by coherently receiving echo.
Echo overlapping inevitably produced speckle noise. Speckle is
a serious obstacle of SAR image object recognition and makes
some ground features disappear. (Xiao Guochao, 2001) So
speckle has to be removed before image fusion.

A few algorithms, such as Lee, Frost, Kuan, Gamma MAP, are
successfully used to denoise speckle with an assumption that
speckle is multiplicative noise. Here the Lee-Sigma (Lee S. J.,
1980) and Gamma MAP algorithms (Lopes A. et al. , 1993;
Baraldi A. et al. , 1995) are chosen, because they can decrease
the lost of edge features while removing speckle noise.

The Lee-Sigma algorithm is described as following

R=1+Kx(CP-UxI) G)
__(Sigma/U?) (6)
" (QVAR/I?)
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R is the grey level of the filtered interest pixel,
QVAR s the variance in filter window,

I is the mean grey level in the filter window,
U is the mean multiplicative noise and usually is 1,

CP is the central pixel in filter window,

Sigma 1s the multiplicative noise variance, it is estimated

based on a Rayleigh distribution and consistent with those
derived from actual data.

The Gamma MAP filter is based on a multiplicative noise
model with non-stationary mean and variance parameters.
Recent work has shown natural vegetated areas have been
shown to be more properly modeled as having a Gamma
distributed cross section. This algorithm incorporates this
assumption. The exact formula used is:

I e
R={BxI+D)/(2a) C,<C,<C,,, @
CP CI 2 Cmax

Where

B=a-NLOOK -1,
D=I*-B*+4.a-NLOOK-I-CP,
a=(1+CHIC*-C?),

C, =1/+/NLOOK »
C =VAR/I >
Con' SN

NLOOK is number of looks,
VAR is variance in filter window.

By experiments we find using both Gamma MAP and
Lee-Sigma filters to achieve better result than using Gamma
MAP or Lee-Sigma filter twice. So here the SAR image is first
filtered by Gamma MAP and then filtered by Lee-Sigma. The
proportions of original SAR image and denoised SAR image
are shown in figure 2. The speckle noise of denoised image has
been obviously removed and edge features have been
conserved.

Figure 2. Proportions of original SAR image (left) and
denoised SAR image (right)

3.2 The fusion algorithm

We design an algorithm based on DT-CWT for fusing a
multi-spectral optical image and a SAR image. First the

registered multi-spectral image and SAR image are
decomposed by DT-CWT respectively, then the approximate
and detail parts of two images are fused according to some
rules at each level, finally the fused image is reconstructed.
This procedure is illustrated by figure 3. The fusion procedure
can be described in detail as following:

(1)Each band of the multi-spectral optical image and the SAR
image are geometrically registered to each other. After
geometrical rectification, their sizes are same.

(2)The gray level of SAR image is stretched tally with each
band of multi-spectral images respectively using histogram
equalization.

(3)Decompose the histogram-specified SAR and registered
multi-spectral optical images with DT-CWT to form their
multi-resolution and multi-directional descriptions. At the same
time, the moduli of their complex wavelet transform are
achieved.

(4)Since the aim of image fusion is to improve image
information quality, we should analyze characteristics of SAR
and optical images. Some objects, like lakes, roads or buildings,
are distinct in SAR image but more details are hard to
recognize. On the contrary, there are enough details and
spectral information in optical image. So we design different
fusion rules for low and high frequency parts fusion to integrate
the advantages of two images.

Image fusion begins with the coarsest level. The gray value of a
fused low frequency part pixel is determined by maximum gray
value rule. The bigger absolute gray value at cooresponding
pixel between SAR and optical images is selected. This rule
makes more approximate parts and spectral information in
optical image conserved.

The important information in SAR image is mostly in the high
frequency parts. But some important details in optical image
are also in the high frequency parts. So we decide to determine
the fused pixel by comparing energy values of corresponding
pixels in two images. The pixel with bigger energy value is the
fused pixel. The energy value of a pixel is calculated in its
centered neighbor window. Considering that DT-CWT of the
images can be interpreted as a complex including real part and
imaginary part, and the modulus can show clear directionality,
the energy values can be computed according to the moduli of
the high frequency parts. The procedure is illustrated in fig. 3.

The wavelet coefficients at point (j, j) of real and imaginary
parts in the SAR image are denoted as W3 (i, j) and w2 (i, j)
respectively. The wavelet coefficients at point (; j) of real
and imaginary parts in the optical image are denoted as
wo(i,j) and wP(i,j) respectively. The magnitudes at point
(i, j) in the SAR image and the optical image are achieved
respectively by

M5 G, )= G, D) + 0 i)
MO, )= \/(71/,;’(1', N +wea ) (8

The energy values at point (j, j) in the SAR image and the
optical image are achieved respectively by
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Where p(j, j) is the neighbor window of point (j, 7). The
window size of DG, J) usually is 3*3 or 5*5.

The fused wavelet coefficient Cp(;, j) at point (j j) is
obtained as following

WS(i,j) EN*(,j)=EN°(,j) (10)

CW(i, j)=
fo {W”(i,j) EN®(i, /)<EN®(i, })

And then, the inverse DT-CWT is carried out for composing the
new merged images at this level.

(5)The composing procedure in (4) are carried out recursively
at their top levels until the first level is processed. This results
in three new images.

(6) The three new produced images are compounded into one
fused image. The fused image contains both the spectral
information of multi-spectral optical images and the object
structure information of SAR image.

Figure 3. Procedure of image fusion based on DT-CWT

4. EXPERIMENTS

We chose two images in experiments. One is a Radarsat-1 SAR
image (acquired in 6" November 2002, along-track slant range
resolution is 8.82 meters, across-track slant range resolution is
5.56 meters) and a SPOTS multi-spectral image composed of
XS1, XS2 and XS3 bands (acquired in 1 October 2002,
ground resolution is 10 meters). They are shown in figure 4.
They have been registered strictly at the same scale. We fuse
the images with DWT and DT-CWT at 1, 2, 3 level
Proportions of the fused images are listed in figure 5.

We find much more details of urban area have been lost for
speckle noise in SAR image, but the lake at center and some
buildings at right are distinct, because water reverberates less
electromagnetic wave but the building produces strong echo.
The buildings with strong echo are white points in the SAR
image, and they clearly show us positions and shapes of the
buildings and roads in the city. So these object features are
what we need to fuse with multi-spectral optical image.

Figure 4. SAR image (left) and SPOTS multi-spectral image
composed of XS1, XS2 and XS3 bands (right)

Figure 5. Proportions of images fused by: (a) 1-level DWT, (b)
2-level DWT, (c) 3-level DWT, (d) 1-level DT-CWT, (¢)
2-level DT-CWT, (f) 3-level DT-CWT

In figure 5 the features in SAR image have been successfully
integrated with SPOT5 image. Parts of urban area have been
enhanced and spectral information has been conserved well.
Figure 5 (a), (b), (c) are fused by DWT at 1, 2, 3 level
respectively, and figure 5 (d), (e), (f) are fused by DT-CWT at 1,
2, 3 level respectively. We observe (a) is similar with (d) but (d)
is vivider. And it is clear that (b) and (c) lost more spectral
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information than (e) and (f).
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and some Then we evaluate the performance of the fusion method using Javier Portilla , Eero P. Simoncelli, 1999, Texture modeling
rates less some image quality indexes. The indexes we selected are and synthesis using joint statistics of complex wavelet coeffici-
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image. Average grads shows exiguous contrast, varied texture
characteristic and definition of the image. Correlated
coefficient is calculated between fused image and SPOTS5
multi-spectral image, which shows how much spectral
information have been conserved. The statistics is shown in tab
1

Average values in table 1 show that the mean gray level of
fused image is very close to the SPOTS image. Standard
difference, entropy and average grads in table 1 show that the
information insufficiency of SAR image has decreased the
information insufficiency of fused images, but the fused images
with DT-CWT have conserved more information than DWT at
corresponding level. Correlated coefficients in table 1 show
that spectral characteristics of the fused images with DT-CWT
are closer to the multi-spectral SPOT5 image than DWT at
corresponding level.

In a word, not only at information enhancement but also at
spectral information conservation, fusion based on DT-CWT is
superior to DWT.

5. CONCLUSIONS

In this paper, the dual-tree complex wavelet transform has been
used to fuse SAR and optical images. According to the
characteristic of SAR image, it is first denoised by Gamma
MAP and Lee-Sigma filter. And then the low and high
frequency parts of decomposed SAR and optical images have
been fused by maximum gray value rule and maximum energy
value rule respectively. Finally images fused by DT-CWT and
DWT at different level have been compared in experiments.
Observation results and statistics of quality indexes have shown
that the fusion algorithm based on DT-CWT was better than
DWT.
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