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ABSTRACT

Finland

A performance analysis between different textural feature descriptors in land-use classi-

fication is presented.

The texture descriptors used are first order statistics,

Both satellite and aerial images are used.

second order (cooccurrence)

statistics, Fourier spectrum, amplitude varying rate statistics and fractal descriptors.
The technical implementation of each of these descriptors in the context of classifica-

tion is also addressed.

Each data set is classified using the spectral features, each

of the texture descriptors and some variations of them, and using a combination of spect-

ral and textural features.
assuming multinormal density functions,
subspace (ALSM) classifier.

The classifiers used are the maximum likelihood classifier
the k-NN classifier and the average learning

The performance analysis, which is based on independent test sites, shows that the ALSM-
classifier and the k-NN classifier work equally well, but the crude assumption of normal

densities in the context of maximum likelihood classifier produces biased results.

No

clear distinction between the behavior of the different texture descriptors was found.

The full usage of the cooccurrence statistics works well.
The more simple texture descriptors,
mension in combination with spectral features,

load is quite heavy.

of satellite images.
tors are called for.

1 b INTRODUCTION

Texture is an important cue for understand-
ing and discriminating in natural images.
However, it is surprisingly seldom utilized
in the context of terrain classification.
In many applications (e.g. land-use clas-
sification) texture features could bring
more discriminatory information. This is
especially true when larger scale imagery
is used. When computing textural feature
vectors for each pixel according to some
local neighborhood, a 1little bit of the
rude assumption of spatial independence
can be broken down. This does not mean
that one should give up from the attempts
to more properly model the sampling pro-
cess, e.g. with the Markov random field
models (see /GemGem84/) and further devel-
op their computational characteristics
especially for multi-dimensional spaces.
This should be the final goal. I thits
paper we are anyhow concerned with more
conservative and practical approaches.

The problem of texture analysis and mo-
delling is a widely discussed problem in
the areas of Pattern Recognition, Image
Analysis, Computer Vision and even in Com-
puter Graphics. Texture is a commonly
used criteria in the early processing of
visual information. Paradoxically however,
because of its loose definition, a huge
amount of methods, both ad hoc and formal,
have been developed (for surveys see /Ha-
rali79/, /GoDeOo85/ and /Harali86/). The
methods fall into two main categories,
namely statistical and structural. The
naming convention is slightly misleading,
because usually quite a lot of statistics
is involved in the structural approaches,

In case of larger scale images,
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However, its computational
like the simple fractal di-
works often equally well in the context
the more complex texture descrip-

COO Images taken over natural terrain
contain both spatially and spectrally quite
irregularlydistributed,usuallymicroscop—
ic, texture elements. The smaller the ima-
ging scale, the less structure it has. In
many circumstances, just a simple measure
of the roughness of the texture can bring
enough discriminatory power to the feature
space. Anyhow, the larger the scale, the
more structure is visible in the texture.
Excluding manmade objects, the spatial
distribution of the (maybe invisible) tex-
tural structure elements is usually quite
irregular also in 1large scale (aerial)
images. Due to these facts, statistical
methods are preferred when analyzing textu-
res in natural images. So is the case
also in the underlying project.

Because of the variability of the texture
measures, a practitioner faces the problem
of choosing the most suitable descriptor
for his application. Reviewing the litera-
ture does not help much, because no tho-
rough comparison exists. There are so many
factors which influence the performance
of a texture classifier (the data, the
texture descriptor, the number of features,
the type of classifier, the number of
trainingsamples,resolutionlevel,prepro—
cessing steps etc.) that a complete compa-
rison would be a huge task. There are some
texture measures, which have been quite
successful in single comparative studies
and which have become quite popular. One
of the most popular texture descriptors
is the second order statistics (Cooccur-
rence Statistics), originally suggested
by Haralick, Shanmugam and Dinstein in
1973 (/HasShDi73/). Another, widely used
descriptor is the Fourier power spectrum.
These two methods are compared in many
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papers to each other, but contradictory
results have been achieved. This certainly
comes from the difficulty involved in their
usage and parameter tuning. Both methods,
as such, produce high dimensional feature
vectors and the usual approach is to compu-
te some ad hoc features from the original
descriptors. This reduces the original
information and makes the comparison dif-
ficult. We have tried to avoid this prob-
lem by careful parameter tuning and by
utilizing standard feature extraction met-
hods (/DevKit82/) which do not reduce dras-
tically the amount of information but only
the dimensionality of the feature vectors.
In addition to these two popular texture
descriptors, we have included in the compa-
rison three other texture measures. First-
ly, a simple first order statistic in the
form of local variance, serves as a kind
of reference. Secondly, the appealing
fractal based descriptors, the fractal
dimension and the fractal signature, are
included. Thirdly, a new method, called
the amplitude varying rate statistical
approach after Zhuang and Dunn /ZhuDun90/,
is included in the comparison, because of
the most promising results achieved in
/ZhuDun90/.

When comparing the performance of texture
descriptors in the context of classifica-
tion, attention has to be paid, not only
to the descriptors, but also to the clas-
sifier itself. It has to be chosen to
properly work with the features chosen.
The usual brute-force application of an
"optimal" maximum likelihood classifier
assuming multi-normal probability densi-
ties, has been, for the writers' opinion,
distorting many comparative studies. Espe-
cially, when using textural descriptors,
the decision boundaries can be highly non-
linear. In these instances, a non-para-
metric classifiers would be the only rea-
sonable choice. A simple, but computa-
tionally heavy, k-NN classifier, has been
proven to have a large sample size error
rate that decreases monotonically to the
optimal Bayesian error rate /CovHar67/.
Its computational complexity can also be
thoroughly improved by the so called edi-
ting and condensing techniques (see Chap-
ter 3). Because a k-NN classifier can pro-
ducehighlynon—lineardecisionboundaries,
it is extensively compared with the ML-
classifier in the present paper. The non-
linearity problem is widely addressed in
Artificial neural network classifiers.
Such an adaptive classifier is the Average
Learning Subspace Method (ALSM) developed
by Oja in /0ja83/. Because of its reported
suitability to texture classification,
especially in the context of cooccurrence
statistics and power spectral methods, it
is the third classifier adopted in this
context.

In Chapter 2 we will review the texture
descriptors, their technical implementa-
tion, and the feature extraction methods
utilized in this project. Chapter 3 is
concentrated on the description of the
classifiers used, and Chapter 4 gives a
summary of the results. Finally Chapter
5 draws some conclusions.

TEXTURE DESCRIPTORS

Haralick defines texture as consisting of
two basic dimensions /Harali79/. The first
one consists of the image texture elements
itself, and the second one of the spatial
dependencies between these elements. This
spatial organization may be random or may
have dependencies between its primitives.
This dependence may be structural, proba-
bilistic, .ox functional. Texture can be
described with such words as fine, coarse,
smooth, granular, regular, irregular, ran-
dom, or structural.

Even today there is no exact mathematical
definition of texture and we still rely
on those loose descriptions. A large part
of the texture analysis techniques are in
fact ad hoc and many statistical approaches
to the measurement and characterization
of image texture exist. In statistical
methods, the pixels are supposed to have
spatial distribution having some statis-
tical characteristics and the analysis
techniques try to determine corresponding
parameters. The statistical characteris-
tics, which one measures, make the dif-
ference between the methods. For a good
survey see e.g. /Harali79/, /Harali86/, or
/GoDe0o85/ .

In the underlying comparison we have chosen
four texture descriptors which are reported
to own good discriminative characteristics,
namely the second order cooccurrence sta-
tistics /HaShDi73/, the 2D power spectrum
/Bajcsy73/, the fractal descriptors /Pent-
1a83/, and the amplitude varying rate app-
roach /ZhuDun90/. These methods, the prob-
lems involved and their technical implemen-
tation will be addressed in Chapters 2.1-
2.4.

2.1 Second order (cooccurrence) statistics

There has been psychovisual evidence that
two textures with identical second order
statistics are not separable from each
other /Julesz62/. Later it was pointed
out by Gagalowicz and Tournier-Lasserve,
that for non-homogeneous textures this
does not hold /GagTou86/. Gagalowicz and
Tournier-Lasserve also claim that natural
textures are usually inhomogeneous. How-
ever, in practice it seems to be a good
approximation for texture distinguishabili-
ty.

The cooccurrence matrix (often referred as
the Gray Tone Spatial Dependence Matrix)
is an estimate of the second order joint
conditional probability density function,
and is defined by /DyHoRo80/ as follows:

Cooccurrence matrix is a G*G matrix, where
each entry (i,3j) is the number of times
gray levels i and j occur at separation d
in the picture, which has been quantized
to G levels.

The high dimensionality of the cooccurrence
matrix produces the first problem. In 8
bit images, a straightforward application
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would produce 256*256 dimensional feature
vectors. However, the estimates would be
highly unreliable. The normal procedure
to compress the number of gray levels,
leads to 8*8 or 16*16 dimensional vectors,
which are still quite high. In the classi-
cal paper of /HaShDi73/ a set of fourteen
features are derived from the cooccurrence
matrix. Usually only a few of them have
been used, the famous five being energy,
entropy, contrast, correlation, and homo-
genity. However, the features that Hara-
lick et al. extract from the cooccurrence
matrix, reduce the amount of information.
E.g., Conners and Harlow /ConHar80/ de-
monstrated by two different textures, ha-
ving different cooccurrence matrices, that
the five features were the same, even when
using different separation parameters d.

Often, the use of just one separation para-
meter is not sufficient. For each separa-
tion parameter, its own matrix can be com-
puted and the features extracted can be
averaged or concatenated. We have chosen
to use the cooccurrence matrix as a feature
vector, without computing any ad hoc featu-
res out of it. To reduce the dimensionali-
ty, we have used normal feature extraction
methods (see e.g. /DevKit82/), and trans-
formed the autocorrelation matrix to an
orthogonal subspace. This strategy was
originally applied in /OjaPar87/.

The second problem comes from the parameter
tuning; which are the separation parameters
to be chosen for our purpose? Zucker and
Terzopoulos considered the cooccurrence
matrix as a contingency table, and used yx-
statistics to analyze periodicities in
the texture for finding the right separa-
tion parameter /ZucTer80/. However, this
statistics have been criticized by Selk&din-
aho, Parkkinen and Oja (/SePa0j87/ and /Se-
Pa0j88/). They demonstrated that this
statistics does not properly discriminate
among the types of dependencies indicated
by the cooccurrence matrix. They also sug-
gested a new statistic, the k-statistics,
which they demonstrated to work better
than the y-statistics. Also the computa-
tional complexity is much lower. We have
applied their methodology in tuning the
parameters of our texture descriptors.

The following algorithm summarizes our
textural feature extractor in the case of
cooccurrence statistics:

1 For each class, compute all possib-
le (using all possible separation
parameters suitable for the window
size) cooccurrence matrices, form
their k-statistics, and take the
one with highest value to present
the cooccurrence statistics of that
class. Compress the number of gray
levels to 8 (dimension of the cor-
responding feature vector is 64).

(2) Combine the resulting matrices to
a feature vector, compute the auto-
correlation matrix, perform a KL-
transformation (See /DevKit82/)
to the resulting matrix, and take

the part which statistically de-

scribes 99% of the information to
represent the cooccurrence featu-

res. For the ALSM-classifier this
is done separately for each class.

2.2 The power spectral method

The power spectrum of the 2D Fourier trans-
formation is another widely used textural
descriptor. Since specific components in
the frequency domain representation contain
explicit information about the spatial
distribution, useful features are obtained.
It was first applied by Bajcsy /Bajcsy73/,
who derived several features from the spec-
trum and showed its power in the problem
of texture analysis. The traditional tex-
ture features, after Weszcka et al. /We-
DyRo76/, extracted from the spatial fre-
quency domain are usually limited to an
array of summed spectral energies within
ring and wedge shaped regions. This re-
sults in a good texture discrimination
only, if the chosen ring or wedge energies
happen to be measured from correct loca-
tions of the power spectrum. D'Astous
and Jernigan /DasJer84/ used a more intel-
ligent methodology by measuring the dist-
ributions of the frequency components.
They concluded to use five descriptors
for each peak in the power spectrum and
three global measures for the whole spect-
rum. Later Liu and Jernigan tried to find
"still better texture measures" from the
Fourier domain /LiuJder90/. They extracted
a total of 28 features from the power
spectrum and from the phase spectrum.

We have used here the same strategy as we
used in the context of the second order

statistics. The whole power spectrum is
used as such, without any special feature
extraction. For small windows the dimen-

sionality of the spectrum is quite 1low,
and the final reduction is done with the
help of the orthogonal transformation.
For comparison we have included the method
described in /DasJer84/.

2.3 The fractal descriptors

The appealing concept of fractals by Man-
delbrot /Mandel77/ has also been applied
to the problem of texture analysis. A
theoretical fractal object is self-similar
to all magnifications, meaning that each
segment of the object is statistically
similar and invariant over scale transfor-
mations. The only description of the met-
ric properties of an ideal fractal comes
from the fractal dimension, which is usual-
ly higher than the topological dimension.
The applicability in texture analysis is
due to the fact, that the fractal dimension
of a surface corresponds quite closely to
our intuitive notion of roughness. The
more wiggling is the object, the higher
fractal dimension it has.

Most real world objects are not ideal frac-
tals (e.g. /Goodch80/). Instead, the frac-
tal dimension varies along scale. Rather
than using the fractal dimension in the
strict sense, the changes of the fractal
dimension can be registered along the sca-
le. This should give more power to the

TIB Hannover



descriptor and was utilized by Peleg et
al. /PeNaHa84/ in the context of texture
classification. Peleg et al. called this
descriptor the factal signature.  They
demonstrated the power of the method in
the context of some Brodatz textures.

The technical problem of measuring the
fractal dimension of surfaces is quite
al Etficuls Recently, Roy et al. showed
empirically that dramatically different
dimensions (2.01-2.33) can be achieved by
applying different algorithms to the same
data /RoGrGa87/. Most of the methods uti-
l1ized are based on the so-called variogram
approach, which can be performed both in
the spatial and frequence domains (see
e.g. /Pentla83/). This shows that the
fractal descriptor indeed has some simila-
rities with the other two methods presented
above (using Fourier spectra or second
order statistics). Other methods utilize
e.g. the number of cubes that are necessary
to estimate the volume /NaSoTa87/, the
surface area covered by a blanket /PeNa-
Ha84/ etc.

The approach we have used originates from
the classical problem of measuring the
length of a coastline. In a texture win-
dow, the length of specific profiles are
computed at each scale. According to the
self-similar properties of fractals,

[N(e)*eP = C] should hold at each scale.
Here e is the scale, N(e) the number of
units needed and C is a constant. By te-

king the 1logarithm over this equation,
parameters C and D can be estimated with
a least-squares procedure. The estima-
tion is done separately in each of the
four main directions at 10 successive sca-
les. This produces either 4- (fractal
dimension) or 32 descriptors (in case of
fractal signatures). In each direction,
three profiles are used and the final value
is an average of these three profiles.
The fractal signatures are always computed
with the help of three successive scales,
similarly to the works of /PeNaHa84/ and
/NaSoTa87/.

2.4 The amplitude varying rate approach

Very recently, Zhuang and Dunn reported
for a new texture measure, which they cadr
led the amplitude varying rate approach
/ZhuDun90/ . In their method the Amplitu-
de Varying Rate Matrix (AVRM) is computed
through examining the profile of each scan
line in a fixed direction and recording
frequencies of distances between pixels
with the same gray level. From this matrix
they are able to estimate the sizes of
the primitives and the periodicity and
contrast of textures. Zhuang and Dunn
strongly argued that their method is better
than the cooccurrence matrix method, be-
cause it can describe some physical inter-
pretations. They also showed empirically
that their algorithm works better than
the second order statistics. The result
can be made questionable, because only
the Haralick's five most popular features
where used.

Because of these promising results we wan-
ted to include this descriptor to the test.
Again the AVRM-method was utilized in the
same framework as the first two methods
reported.

3. CLASSIFIERS

Because the usual assumption of multi-nor-
mal probability density functions in the
context of parametric classifiers does
not hold in texture classification, the
Bayesian optimality of such a classifica-
tion system is brutally violated. That is
why, the maximum likelihood (ML) classi-
fier serves here just as a reference. The
other two classifiers (k-NN and ALSM) app-
1ied are both non-parametric and can better
adopt themselves to the non-linear decision
boundaries.

3.1 The k-NN classifier

The k-NN classifier (see e.g. /DevKit82/)
can be regarded as the most important clas-
sifier with respect to practical applica-
tions. It has been proven in /CovHar67/
that the (large sample) error rate of the
k-NN classifier monotonically decreases
towards the optimal error bound of a
Bayesian classifier as k goes towards in-
finity. When sample size is finite, this
is not anymore valid /Devivj80/.

The proper choice of k is of course a dif-
ficult problem. In principle, one should
choose k as big as possible, but practical
problems will occur, because of the fini-
te sample sizes (k does not monotonically
decrease the classification accuracy). A
useful guideline given in literature sug-
gests to select k proportional to the squa-
re root of the sample size.

The k-NN classifier has not been too widely
used in practical applications, because of
the storage and computational complexity
it imposes. However, techniques have been
presented for competing with traditional
techniques in this respect. The solution
is to use two preprocessing techniques,
namely, Editing and Condensing (see /Dev-
Kix8843, The idea is to select a small
subset from the training set such that
the 1-NN classification with the reduced
dataset achieves a performance, which is
close to or better than the performance
of 1-NN classification with the complete
set. The editing procedure is based on
the holdout technique and can be summarized
as follows /DevKit80/:

(1) Make a random partition of the
available training data into N
subsets (diffusion).

(2) Classify the samples in subset i
using the k-NN of subset
MOD( (i+1),N) (classification).

(3) Discard all the samples that were
misclassified at step 2 (editing).

(4) Pool the remaining data:to consti-
tute a new data set (confusion).
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After this procedure has finished the final
classification happens using the resulted
dataset and the 1-NN classifier. By the
so called Multiediting approach, the number
of samples can be further reduced by repea-
ting the above editing procedure until no
editing occurs. In /DevKit80/ both theore-
tical and experimental evidence is given
for proving the most favorable result,
that the above procedure converges asympto-
tically (in the number of iterations) to
the Bayes decision rule.

After the multiediting algorithm, the data
is nicely clustered (because all the misc-
lassified samples are rejected). The 1-
NN classifier creates piecewise 1linear
decision boundary (being approximation of
the Bayes boundary). This boundary is ac-
tually defined by a small subset of samp-
les belonging to the outer boarders of
the clusters. It is clear that only these
sample points are needed for the 1-NN clas-
sifier. The aim of condensing is to find
such representative points.

So after multiediting and condensing, a
mostly powerful 1-NN classifier can be
used. It has the property of approximating
the Bayes decision boundary and being very
fast to compute. Our k-NN classifier has
been implemented by using this technique.

3.2 The Average Learning Subspace Method

The subspace methods are reported in
/0ja83/. A subspace in the n-dimensional
pattern space is spanned by p linearly
independent, orthonormal basis vectors
a; . The dimension of the subspace is then
p. From the point of view of classifica-
tion, a subspace restricts the possible
directions in it, while the lengths remain
undetermined. Suppose we have M classes
in the classification problem, each being
represented by a subspace, with dimensiona-
lities p, . Usually p; is much lower than
the original dimension. The simple classi-
fication rule then states that: if the
distance between the pattern vector x and
subspace i is smaller than between the
pattern vector and subspace j, then classi-
Y kcinolass 1. The distance from the
subspace can be computed as follows:
d(x,L) = |x|2 - Zp(xTui)z,
where u; are the orthonormal basis vec-
tors:

Since |x|? is the same for each class, it
can be dropped and the classification rule
consists only of inner products. SO L1f
the subspaces dimensions are small, the
classifier is very fast.

'ne essential question 1in the subspace
method is how to actually construct the
class subspaces to obtain optimal perfor-
mance. The CLAFIC method /Watana69/ forms
each subspace by minimizing the mean square
error of the distances of a training set.
This can be shown to be equivalent of maxi-
mizing

e (ujTCuj),

where C is the autocorrelation matrix.337

The eigenvalue decomposition solves this
problem and usually the first few eigenvec-
tors span the subspace.

A serious drawback of the CLAFIC method
is that each class subspace, although de-
pending on the statistics of the class,
is formed independently from the other
classes. So, two classes overlapping each
other may be very hard to discriminate.
This leads to the ALSM-method which adapts
itself better to this situation by learn-
ing. In the ALSM-method, the autocorrela-
tion matrices are updated according to
misclassifications. This means that, if
either a sample vector of class i is misc-
lassified to another class (j), or a sample
vector of another class (k) is misclassi-
fied to i, the learning phase of the clas-
sifier updates the autocorrelation matri-
ces of each class by:

RS R TR
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m-1

Here «a and pf are small constants, and
should be small enough to avoid overshoot-
ing. In this learning phase, the subspa-
ces will be iterated sufficiently long so,
that the classification of the training
set becomes stable. The algorithm can be
proven to converge /0ja83/. The constants
a and B were both set to values 0.005 in
this project.

4. SUMMARY OF THE RESULTS

The test material consists of two 1:15 000
aerial images both digitized in 4500%4500
format, one SPOT scene from rural and one
SPOT scene from urban area. Two indepen-
dent test sites were created. The other
was used as a training sample and consisted
of approximately 1300 samples for each
class. The other was used as an indepen-
dent test set and consisted of approximate-
ly 5000 samples for each class. The clas-
sification tried to separate five classes,
urban or residential areas, two types of
forest areas, pasture land or parks, and
fields. In case of multichannel imagery,
the textural descriptors were computed
from channel 3 (infrared).

The practical classification was performed
using a window of 31*31 pixels in the ae-
rial images and using a window of 13%*13
in the SPOT images.

Subspaces vs. extracted ad hoc features

Some preliminary runs were made to have an
idea, if there is some difference in using
the traditional feature descriptors of
the cooccurrence statistics and the Fou-
rier power spectrum, compared to the stra-
tegy of using these descriptors as such.
These tests were performed on the basis
of the aerial images only.

The dimensional reduction achieved by an
orthogonal transformation was surprisingly
high. The dimension of the final subspace
was usually 5-10, although the original
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dimensionality was at least 256 (16*16).
Still the discriminatory power of the
transformed space was better or the same
than by the five features of Haralick.
The same applies for the power spectrum
method compared to the descriptors of /Das-
Jer84/. This is only true for the k-NN
and ALSM classifiers, but not for the ML-
classifier, showing again the problems
involved in the ML-classification. In
that case the performance of the classifier
distorted the results so, that correct
conclusion could not be made.

| Descriptor Classifier

|

| ALSM k-NN ML

|

| variance 73/78 77/78 65/68

| Cooccurence 97/98 98/98 76/75

| Fourier Spectrum 93/98 94/96 75/77

| Fractal-dimension 76/89 75/90 69/80

| Fractal-signature 76/88 76/90 69/74
AVHR 94/96 91/95 77/78
Table 1. Summary of the results in case of 1:15000

aerial imagery. Precentage of correct
classifications, without/with spectral

features.
T Descriptor Classifier
ALSM k-NN ML
Variance 59/82 59/82 55/61
Cooccurence 86/97 87/98 69/82
Fourier Spectrum 74/94 74/93 65/77
Fractal-dimension 71/94 71/95 69/81
Fractal-signature 70/95 71/94 63/74
AVHR 80/93 81/93 70/74
Table 2. Summary of the results in case of the SPOT
image 1 (rural). Precentage of correct

classifications, without/with spectral
features.

| Descriptor Classifier
| |
1 ALSM k-NN ML |
| |
| Variance 62/81 62/82 59/69 |
| Cooccurence 87/96 87/97 70/86 |
| Fourier Spectrum 71/92 73/92 65/82 |
| Fractal-dimension 71/94 71/95 69/81 |
| Fractal-signature 70/95 70/94 63/80 |
AVHR 80/93 81/93 70/74 3 4
Table 3. Summary of the results in case of the SPOT
image 2 (urban). Precentage of correct

classifications, without/with spectral
features.

Comparison of the descriptors

Tables 1-3 summarize all the results. As
can be seen no clear distinction can be
made, but usually the cooccurrence statis-
tics yield the best results, achieving a

very low error rate of 2-4%. As could be
predicted, the larger scale imagery favors
the more complex descriptors. At smaller

scale images, also the very simple fractal
descriptor produces good results (error
rate of 7%) and it clearly competes the
other simple descriptor, namely the varian-
ce.

Against the expectations, the fractal sig-
nature does not bring more information as
compared to the fractal dimension. This
might be caused by the relatively small
window size, together with the method of
estimating the fractal signature.

Contradictionary to the conclusion drawn
in /ZhuDun90/, the AVHR seems to own a
little bit higher error rate than the cooc-
currence statistics.

In the SPOT images, it seems clear, that

the textural descriptors alone cannot bring
satisfactory results.

Comparison of the classifiers

As could be expected the ML-classifier
behaves worst. No separation between the
performance of the k-NN and ALSM-classi-
fiers can be seen.

5. CONCLUDING REMARKS

The results indicated very clearly that
the choice of a classifier is utmost impor-
tant, when texture classification is per-

formed. Both non-parametric classifiers
used (k-NN and ALSM) can be highly recom-
mended in this context. The usage of a

ML-classifiers should be avoided.

For larger scale imagery some more complex
measures are asked for, but in case of
smaller case images, the simple descriptors
based on computed fractal dimension in four
main directions of a local window seem to
work nicely and are computationally light.
In the case of satellite images, the spect-
ral channels should be combined to the
texture descriptors before reasonable
results can be expected.

The reason for these relatively optimistic
results (error rates in the order of 5%)
comes partly from the test data. Only
ideal windows were used. In practical
applications, the boarder areas of the tex-
ture areas cause some troubles and this
test should be carried out also by using
such indistinct areas.

Although the result show promising out,
one should not forget, that the methods
applied, are all rather heuristic in natu-
re. The best way for texture analysis
should be to model the whole sampling pro-
cess, e.g. with the help of stochastic 2D
processes. We hope that in the future
the algorithms and hardware implementa-
tions are powerful enough to utilize these
more complete and more formal models.
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