Retrodigitalisierung Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Mapping without the sun

Access restriction

There is no access restriction for this record.

Copyright

The copyright and related rights status of this record has not been evaluated or is not clear. Please refer to the organization that has made the Item available for more information.

Bibliographic data

fullscreen: Mapping without the sun

Monograph

Persistent identifier:
856578517
Author:
Zhang, Jixian
Title:
Mapping without the sun
Sub title:
techniques and applications of optical and SAR imagery fusion ; Chengdu, China, 25 - 27 September 2007
Scope:
1 Online-Ressource (III, 352 Seiten)
Year of publication:
2007
Place of publication:
Lemmer
Publisher of the original:
GITC
Identifier (digital):
856578517
Illustration:
Illustrationen, Diagramme, Karten
Language:
English
Publisher of the digital copy:
Technische Informationsbibliothek Hannover
Place of publication of the digital copy:
Hannover
Year of publication of the original:
2016
Document type:
Monograph
Collection:
Earth sciences

Chapter

Title:
LAND COVER CHANGE AND CLIMATIC VICISSITUDE RESEARCH IN HEADSTREAM REGIONOF YELLOW RIVER IN THE NINETIES OF THE TWENTIETH CENTURY. DAI Ji-guang, YANG Tai-bao, REN Jia-qiang
Document type:
Monograph
Structure type:
Chapter

Contents

Table of contents

  • Mapping without the sun
  • Cover
  • ColorChart
  • Title page
  • Table of Content
  • Foreword
  • Scientific Committee:
  • Organizing Committee:
  • DECISION FUSION OF MULTITEMPORAL SAR AND MULTISPECTRAL IMAGERY FOR IMPROVED LAND COVER CLASSIFICATION B. Waske a, J. A. Benediktsson b’*
  • SYNERGISTIC USE OF OPTICAL AND INSAR DATA FOR URBAN IMPERVIOUS SURFACE MAPPING: A CASE STUDY IN HONG KONG. Liming Jiang, Hui Lin, Mingsheng Liao, Limin Yang
  • A NOVEL FUSION METHOD OF SAR AND OPTICAL IMAGES FOR URBAN OBJECT EXTRACTION. Jia Yonghong, Rick S. Blum,Ma Yunxia
  • REAL-TIME SAR SIMULATION FOR CHANGE DETECTION APPLICATIONS BASED ON DATA FUSION. Timo Balz
  • THE OPTIMIZING METHOD OF FUSING SAR WITH OPTICAL IMAGES FOR INFORMATION EXTRACTION. Feng Xie, Yingying Chen, Yi Lin
  • ORTHORECTIFYING SPACEBORNE SAR BY DEM BASED ON FINE REGISTRATION. Hongjian You, Fu Kun
  • DETECTION AND ANALYSIS OF EARTHQUAKE-INDUCED URBAN DISASTER BASED ON INSAR COHERENCE. M. He, X. F. He
  • MULTI-SCALE SAR LAND USE/LAND COVER CLASSIFICATION BASED ON CO-OCCURRENCE PROBABILITIES. Yu ZENG, Jixian ZHANG, J. L.VAN GENDEREN, Haitao LI
  • TERRASAR-X AND TANDEM-X: REVOLUTION IN SPACEBORNE RADAR. Ralf Duering
  • A MULTI-WAVELENGTH IMAGING SYSTEM FOR DETECTION OF FOREIGN FIBERS IN COTTON. Lu Dehao
  • A FUSION ALGORITHM OF HIGH SPATIAL AND SPECTRAL RESOLUTION IMAGES BASED ON ICA. GuoKun Zhang, LeiGuang Wang, Hongyan Zhang
  • A SUPER RESOLUTION RECONSTRUCTION ALGORITHM TO MULTI-TEMPORAL REMOTE SENSING IMAGES. Pingxiang Li, Jixian Zhang, Huanfeng Shen, Liangpei Zhang
  • COMPARISON OF MORPHOLOGICAL PYRAMID AND LAPLACIAN PYRAMID TECHNIQUES FOR FUSING DIFFERENT FOCUSING IMAGES. Jia Yonghong, Fu Xiujun, Yu Hongwei
  • MONITORING AND CHARACTERIZING NATURAL HAZARDS WITH SATELLITE INSAR IMAGERY. Z. Lu
  • PREDICTION AND SIMULATIONS OF MALAYSIAN FOREST FIRES BY MEANS OF RANDOM SPREAD. Jean Serra, Mohd Dini Hairi Suliman, and Mastura Mahmud
  • TEXTURE CLASSIFICATION RESEARCH BASED ON LIFTING-BASED DWT 9/7 WAVELET. Hong Zhang, Ning Shu
  • REMOTE SENSING IMAGE SEGMENTATION BASED SELF-ORGANIZING MAP AT MULTI-SCALE. Zhao Xi-an, Zhang Xue-wen Wei Shi-yan
  • A JOINT SPATIAL-TEMPORAL CLASSIFICATION AND FEATURE BOUNDARY UPDATING MODEL. P. Caccetta
  • THE APPLICATION RESEARCH IN ASSISTANT CLASSIFICATION OF REMOTE SENSING IMAGE BY TEXTURE FEATURES COMBINED WITH SPECTRA FEATURES. Y. M. Fang, X. Q. Zuo, Y. J. Yang, J. H. Feng
  • A KIND OF THE METHODS FOR SAR AND OPTICAL IMAGES FUSION BASED ON THE LIFTING WAVELET. Shao Yongshe, Chen Ying, Li Jing
  • SOIL MOISTURE RETRIEVAL COMBINING OPTICAL AND RADAR DATA DURING SMEX02. Chen Quan, Li Zhen, Tian Bangsen
  • A TARGET DETECTION METHOD BASED ON SAR AND OPTICAL IMAGE DATA FUSION. Sun Mu-han, Zhou Yin-qing, Xu Hua-ping
  • FUSION SAR AND OPTICAL IMAGES TO DETECT OBJECT-SPECIFIC CHANGES. Mu H. Wang, Hai T. Li, Ji. X Zhang ,Jing H. Yang
  • APPLICATION OF DINSAR AND GIS FOR UNDERGROUND MINE SUBSIDENCE MONITORING. YAN Ming-xing, MIAO Fang, WANG Bao-cun, QI Xiao-ying
  • THE DETECTION OF SUBSIDENCE AT PERMANENT FROZEN AREA IN QINGHAI-TIBETAN PLATEAU. Z. Li, C. Xie, Q. Chen
  • RESEARCH ON SURFACE SUBSIDENCE MONITORING WITH INSAR/GPS DATA FUSION IN MINING AREA. ZHANG Ji-chao, SONG Wei-dong, ZHANG Ji-xian, SHI Jin-feng
  • SEVEN YEARS OF MINING SUBSIDENCE DETECTED BY D-InSAR TECHNIQUE IN FUSHUN CITY, CHINA. Y. L. Chen, X. L. Ding, C. Huang, Z. W. Li
  • A METHOD ON HIGH-PRECISION RECTIFICATION AND REGISTRATION OF MULTI-SOURCE REMOTE SENSING IMAGERY. Bin Liu, Guo Zhang, Xiaoyong Zhu, Jianya Gong
  • STUDY ON TIE POINT SELECTION FOR CO-REGISTRATION OF DIFFERENT RESOLUTION IMAGERY. Zhen Xiong, Yun Zhang
  • THE STUDY OF SPACE INTERSECTION MODEL BASED ON DIFFERENT-SOURCE HIGH RESOLUTION RS IMAGERY. Weixi Wang, Qing Zhu
  • AN OPTIMIZATION HIGH-PRECISION REGISTRATION METHOD OF MULTI-SOURCE REMOTE SENSING IMAGES. LIN Yi, JIAN Jianfeng , ZHANG Shaoming, XIE Feng
  • A METHODOLOGY OF LUCC CHANGE DETECTION BASED ON LAND USE SEGMENT. Ning Shu, Hong Zhang, Xue Li, Yan Wang
  • APPLICATION OF MULTI-TEMPORAL TM (ETM+) IMAGE IN MONITORING MINING ACTIVITIES AND RELATED ENVIRONMENT CHANGES: A CASE STUDY AT DAYE, HUBEI, CHINA. Shiyong YU, Zhihua CHEN, Yanxin WANG
  • LAND COVER CHANGE AND CLIMATIC VICISSITUDE RESEARCH IN HEADSTREAM REGIONOF YELLOW RIVER IN THE NINETIES OF THE TWENTIETH CENTURY. DAI Ji-guang, YANG Tai-bao, REN Jia-qiang
  • LAND USE CHANGES IN THREE GORGES RESERVOIR AREA IN RECENT 30 YEARS. Sun xiaoxia, Zhang jixian, Liu zhengjun
  • AUTOMATED VEHICLE INFORMATION EXTRACTION FROM ONE PASS OF QUICKBIRD IMAGERY. Zhen Xiong, Yun Zhang
  • CLASSIFICATION OF LAND TYPES IN MINERAL AREAS BASED ON CART. Wenbo Wu, Yuping Chen, Jiaojiao Meng, Tingjun Kang
  • OBJECT-ORIENTED CLASSIFICATION OF HIGH-RESOLUTION REMOTE SENSING IMAGERY BASED ON MRF AND SVM. GU Haiyan, LI Haitao, ZHANG feng, HAN Yanshun, YANG Jinghui
  • EXTENSIBLE LAND USE AND LAND COVER CLASSIFICATION FRAMEWORK DESIGN BASED ON REMOTELY SENSED DATA. Wang Juanle
  • THE ROAD EXTRACTION IN THE AREA COVERED WITH HIGH VEGETATION USING THE FUSION IMAGE OF SAR AND TM. Shen Jin-li, Yu Wu-yi, Qi Xiao-ping, Zhang Yi-min
  • DISCRETE WAVELET-BASED FUSION OF TM MULTI-SPECTRAL IMAGE AND SAR IMAGE DATA. Liang Shouzhen, Li Lanyong
  • FUSING SAR AND OPTICAL IMAGES BASED ON COMPLEX WAVELET TRANSFORM. Shuai Xing, Qing Xu
  • A COMPREHENSIVE QUALITY EVALUATION METHOD OF INFORMATION FUSION FROM HIGH-RESOLUTION AIRBORNE SAR AND SPOT5 IMAGES. Wenqing Dong, Qin Yan,
  • A SIMPLIFIED FUSION METHOD BASED ON SYNTHETIC VARIABLE RATIO. Pang Xinhua, Xi Bin, Chen Luyao, Pan Yaozhong,, Zhuang Wei
  • A NOVEL IMAGE FUSION METHOD BASED ON 2DPCA IN REMOTE SENSING. Xue-ming Wu, Wu-nian Yang
  • A METHOD TO DETERMINE SPATIAL RESOLUTION OF REMOTE SENSING FUSED IMAGE QUANTITATIVELY. X. J. Yue, L. Yan, G. M. Huang
  • A NEW PAN-SHARPENING ALGORITHM AND ITS APPLICATION IN GEOGRAPHIC FEATURES INFORMATION EXTRACTION. ZHU Lijiang
  • RESEARCH ON THE PROCESS OF LAND USE/COVER CHANGE IN THREE GORGES RESERVOIR AREA IN RECENT 30 YEARS. SHAO Huai-Yong, XIAN Wei, LIU Xue-Mei, YANG Wu-Nian
  • THE STUDY OF LAND USE CHANGE DETECTION BASED ON SOLE PERIOD RS IMAGE. Song Weidong, Wang Jingxue, Qin Yong
  • ANALYSIS OF THE LAND USE OF SHENYANG MINING DISTRICT AND ITS DRIVING FORCE. Kaixuan Zhang, Wenbo Wu, Chongchang Wang, Tingjun Kang
  • REMOTE-SENSING IMAGE COMPRESSION BASED ON FRACTAL THEORY. Chao Mu, Qin Yan, Jie Yu, Huiling Qin
  • MATRIX DECOMPOSITION AND MATRIX SOLVERS IN PHOTOGRAMMETRY. Cheng Chunquan, Deng Kazhong, Zhang Jixian, YanQin
  • INVESTIGATING SEVERAL POINT CLOUD REGISTRATION MOTHEDS. Luo Dean, Zhou Keqin, Huang Jizhong
  • THE ACCURACY ASSESSMENT OF ORTHORECTIFIED ASTER IMAGE. Li Baipeng, Yan Qin, Chen Chunquan
  • EPIPOLAR RESAMPLING OF DIFFERENT TYPES OF SATELLITE IMAGERY. Jiaying Liu, Guo Zhang, Deren Li
  • REFINEMENT AND EVALUATION OF BEIJING-1 ORTHORECTIFICATION BASED ON RFM. Jianming Gong, Xiaomei Yang, Chenghu Zhou, Xiaoyu Sun, Cunjin Xue
  • LAND COVER CLASSIFICATION BY IMPROVED FUZZY C-MEAN CLASSIFIER. ZHAO Quan-hua, SONG Wei-dong, Bao Yong
  • RESEARCH ON GRIDDING PROCESSING STRATEGIES OF REMOTE SENSING IMAGE SEGMENTATION BY REGION GROWTH. ZHU Hong-chun, ZHANG Ji-xian, LI Hai-tao, YANG Jing-hui, LIU Hai-ying
  • TEXTURE ANALYSIS IN INFORMATION EXTRACT IN THE HIGH RESOLUTION RS IMAGES LU Shuqiang
  • THE STUDY OF REMOTE SENSING IMAGE INFORMATION EXTRACTION TECHNIQUES BASED ON KNOWLEDGE. Wenbo Wu, Jiaojiao Meng, Yuping Chen, Jing Chen
  • A NEW METHOD OF SIMULATION OF INTERFEROGRAM IMAGE FOR REPEAT-PASS SAR SYSTEM. Jianmin Zhou, Zhen Li, Xinwu Li, Chou Xie
  • COMPARISON AND IMPROVEMENT OF POSITION METHODS OF AIRBORNE STEREO SAR IMAGES. H. D. Fan, K. Z. Deng, G. M.Huang, Z. Zhao., X. J. Yue, X. M. Luo, Y. F. Ling
  • STUDY ON TOPOGRAPHIC MAP UPDATING WITH HIGH RESOLUTION AIRBORNE SAR IMAGE. X .M. Luo, G. M. Huang, Z. Zhao
  • AN EXPERIMENT OF HIGH RESOLUTION SAR IMAGE IN DYNAMIC MONITORING THE CHANGE OF CONSTRUCTION LAND. CaoYinxuan, Zhang Yonghong, YanQin, ZhaoZheng
  • RESEARCH ON STATISTICS AND SPATIAL ANALYSIS OF DRAINAGE BASIN'S IMPORTANT GEOGRAPHICAL ELEMENTS. Liu Ping, Liu Jiping, Zhao Rong
  • THE RESEARCH AND ESTABLISHMENT OF IMAGE DATABASE SYSTEM BASED ON ORACLE. Li Lanyong, Song Weidong, Chen Zhaoliang, Zhao Hongfeng
  • SITE SELECTION FOR SATELLITE GEOMETRIC TEST RANGE IN CHINA. Xinxin Zhu, Guo Zhang, Qing Zhu, Xinming Tang
  • ANALYSIS OF IMAGES GEOMETRIC RECTIFICATION FOR QUICKBIRD. WANG Chong-chang , WANG Li-li, Zhang Li, Zhang Kai-xuan, Ma Zhen-li, ZHANG Zhen-yong
  • RESEARCH ON DYNAMIC SYMBOL BASE. Yang ping, Tang Xinming, Wang Shengxiao, Lei Bing, Wang Huibing
  • DETERMINATION OF CHLOROPHYLL CONCENTRATION IN THREE GORGES DAM USING CHRIS/PROBA IMAGE DATA. GAI Li-ya, LIU Zheng-jun,ZHANG Ji-xian
  • RESEARCH ON LAND SANDY DESERTIFICATION WITH REMOTE SENSING -Take Qinghai Lake Areas as an example. Jian Ji, Chen Yuanyuan, Yang wunian, Tang nengfu
  • METHODS AND APPLICATION OF QUALITY ASSESSMENT FOR REMOTE SENSING IMAGE COMPRESSION. ZHAI Liang, TANG Xinming, ZHANG Guo, ZHU Xiaoyong
  • ON-ORBIT MTF ESTIMATION METHODS FOR SATELLITE SENSORS. LI Xianbin, JIANG Xiaoguang, Tang Lingli
  • AUTHOR INDEX
  • KEYWORDS INDEX
  • Cover

Full text

4. NOAA-AVHRR DATA PROCESSING AND 
ANALYSIS 
In this paper AVHRR data undergoes projection transformation, 
geometry rectification, maximum value compose of NDVI, 
NDVI calculation and image classification so that AVHRR 
data transferred from Raw Data to the final data used in 
analysis. 
4.1 Projection transformation and geometry rectification 
NOAA satellite does not measure parameter of the real satellite 
orbit every day. Within the measure spacing the satellite orbit 
parameters are obtained by forecast so that there are 
accumulated errors. Since NOAA satellite scanning range is 
wide so that at the margin of the image, the degree of pels 
aberration is very heavy. AVHRR data offered by CLASS have 
not geographic coordinates projection, but head file provided 
enough Ground Control Point that could be the conversion of 
geography coordinate system and the conversion of projection 
system. 
We pick up the data that is in the middle of scan strip,then 
Transform original data Into Universal Transverse Mercator 
( UTM ) Zone N47 projection,Datum-WGS-84.But this 
initial projective data commonly have several or tens pixel 
errors. NOAA/AVHRR images must be rectified if the data is 
put into the practical application(Wei Ya-xing et al,2005; 
Huang Jing-feng et al,2000). However, In this paper, the 
polynomials correction techniques are used to deal with the 
data by referring to 1:1,000,000 digital map of headstream 
region of Yellow River, the corrected result is within the error 
of one pixel. 
4.2 Data Synthesis 
Most AVHRR data have much cloudiness (or cloud amount), 
which produces difficulties to the application of the data(Wang 
Run et al,2005; Huang Yong-jie et al,2003). There are many 
kinds of cloudiness processing techniques of NOAA-AVHRR 
data. The research adopts the maximum value combination 
(MVC) method, which carries out the synthesis processing of 
removing cloudiness to deal with a lot of data by computing the 
Fig.3 shows the variation tendency of the four kinds of land 
cover type that NDVI data reflects. 
As shown in Fig. 3, the overall NDVI variation tendency of the 
study district is that the areas of the naked, water-body, 
desertified land and the low vegetation cover land increase year 
by year, and the one of the high vegetation cover land drops 
suddenly, but the area of the middle vegetation cover land does 
not change much. The reason of this kind of change can be 
explained through the way of the transform sequences of the 
land cover type. The high vegetation covers land degenerates 
continuously and becomes the middle vegetation cover land, 
some middle vegetation cover land becomes the low vegetation 
cover land. The degradation speed of the low vegetation cover 
land is slower than the one of the former two, but some low 
vegetation cover land also degenerates to the desertified and 
naked land. Therefore, in statistics, the area of the high 
vegetation cover land reduces most soon, and the area of the 
low vegetation cover land takes the second place, and the one 
of the naked, water-body, desertified land increase minimally, 
and the area of the middle vegetation cover land does not 
change much in general or increase slowly. 
NDVI maximum value.( Holben B N,1986) The specific 
method is to firstly select data of low cloudiness more than 3 
scenes month by month, and then combine these data to a 
month maximum value by using the MVC method, and then 
combine each three month maximum values to a quarter 
maximum value, and finally combine four quarter maximum 
values to an annual maximum value. The actual calculated 
result proves that the MVC method shows good effects of 
removing cloudiness besides the water-body and snow-ice 
areas. The annual maximum value after the synthesis can 
represent the best condition of the vegetation growing in this 
area for this year. 
4.3 NDVI calculation and statistical properties 
Vegetation index can reflect the state of vegetation growing 
and regional vegetation distribution. At present we can employ 
the ratio vegetation index (RVI), the difference vegetation 
index (DVI), the perpendicular vegetation index (PVI), the 
normalized difference vegetation index (NDVI) etc. Among 
them NDVI is the most extensively employed vegetation index 
at present. The computing method of NDVI is (NIR-R) / (NIR- 
R). Calculating specifically in NOAA-AVHRR data is (CH2- 
CH1) / (CH2+CH1), and the value range is between -1 and 1. 
The research area of the Yellow River Source lies in Qinghai- 
Tibet Plateau. With sparse population, the land cover type 
changes mainly from the changing vegetation, being reflected 
by NDVI is that NDVI varies with time. Regional NDVI lattice 
and point numbers in the different value range can represent the 
general variation tendency for various land cover types in the 
region. We have counted the lattice and point numbers of six 
NDVI raster data of 1990, 1992, 1994, 1996, 1998 and 2000 in 
the research area of the Yellow River Source by interval of 
NDVI fetching value of 0.01, and carried out the clustering 
analysis. Through analyzing the practical meaning of 
classifications and the contrast and amalgamation among 
classifications, the change of NDVI is divided to four big 
classes, which represent roughly 4 kinds of land cover type, i.e. 
the water-body, naked or desertified land, the low vegetation 
cover land, the middle vegetation cover land, and the high 
vegetation cover land 
Area Change of Major NDVI Class 
♦ Higher Vegetation Cover Land A Middle Vegetation Cover Land 
▼ Lower Vegetation Cover Land ■ Naked or Desertized Land 
Fig.3 Area Change of 
Cluster Analyse Generated NDVI Class 
4.4 Images classification and results analysis 
Statistics and classifications can not represent the detailed 
change of each specific land cover type, it is necessary to 
utilize the categorized method of the remote sensing image to 
divide the land cover type and analyze the changing state and 
space distribution of the land cover type every year by 
comparison. In addition, because the space resolution ratio of
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Monograph

METS MARC XML Dublin Core RIS Mirador ALTO TEI Full text PDF DFG-Viewer OPAC
TOC

Chapter

PDF RIS

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Monograph

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Chapter

To quote this structural element, the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

To quote this image the following variants are available:
Here you can copy a Goobi viewer own URL:

Citation recommendation

zhang, jixian. Mapping without the Sun. GITC, 2007.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Contact

Have you found an error? Do you have any suggestions for making our service even better or any other questions about this page? Please write to us and we'll make sure we get back to you.

What is the fifth month of the year?:

I hereby confirm the use of my personal data within the context of the enquiry made.