Retrodigitalisierung Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

CMRT09

Access restriction

There is no access restriction for this record.

Copyright

CC BY: Attribution 4.0 International. You can find more information here.

Bibliographic data

fullscreen: CMRT09

Monograph

Persistent identifier:
856955019
Author:
Stilla, Uwe
Title:
CMRT09
Sub title:
object extraction for 3D city models, road databases, and traffic monitoring ; concepts, algorithms and evaluation ; Paris, France, September 3 - 4, 2009 ; [joint conference of ISPRS working groups III/4 and III/5]
Scope:
X, 234 Seiten
Year of publication:
2009
Place of publication:
Lemmer
Publisher of the original:
GITC
Identifier (digital):
856955019
Illustration:
Illustrationen, Diagramme, Karten
Language:
English
Usage licence:
Attribution 4.0 International (CC BY 4.0)
Publisher of the digital copy:
Technische Informationsbibliothek Hannover
Place of publication of the digital copy:
Hannover
Year of publication of the original:
2016
Document type:
Monograph
Collection:
Earth sciences

Chapter

Title:
EXTRACTING BUILDING FOOTPRINTS FROM 3D POINT CLOUDS USING TERRESTRIAL LASER SCANNING AT STREET LEVEL Karim Hammoudi, Fadi Dornaika and Nicolas Paparoditis
Document type:
Monograph
Structure type:
Chapter

Contents

Table of contents

  • CMRT09
  • Cover
  • ColorChart
  • Title page
  • Workshop Committees
  • Program Committee:
  • Preface
  • Contents
  • EFFICIENT ROAD MAPPING VIA INTERACTIVE IMAGE SEGMENTATION O. Barinova, R. Shapovalov, S. Sudakov, A. Velizhev, A. Konushin
  • SURFACE MODELLING FOR ROAD NETWORKS USING MULTI-SOURCE GEODATA Chao-Yuan Lo, Liang-Chien Chen, Chieh-Tsung Chen, and Jia-Xun Chen
  • AUTOMATIC EXTRACTION OF URBAN OBJECTS FROM MULTI-SOURCE AERIAL DATA Adriano Mancini, Emanuele Frontoni and Primo Zingaretti
  • ROAD ROUNDABOUT EXTRACTION FROM VERY HIGH RESOLUTION AERIAL IMAGERY M. Ravenbakhsh, C. S. Fraser
  • ASSESSING THE IMPACT OF DIGITAL SURFACE MODELS ON ROAD EXTRACTION IN SUBURBAN AREAS BY REGION-BASED ROAD SUBGRAPH EXTRACTION Anne Grote, Franz Rottensteiner
  • VEHICLE ACTIVITY INDICATION FROM AIRBORNE LIDAR DATA OF URBAN AREAS BY BINARY SHAPE CLASSIFICATION OF POINT SETS W. Yaoa, S. Hinz, U. Stilla
  • TRAJECTORY-BASED SCENE DESCRIPTION AND CLASSIFICATION BY ANALYTICAL FUNCTIONS D. Pfeiffer, R. Reulke
  • 3D BUILDING RECONSTRUCTION FROM LIDAR BASED ON A CELL DECOMPOSITION APPROACH Martin Kada, Laurence McKinle
  • A SEMI-AUTOMATIC APPROACH TO OBJECT EXTRACTION FROM A COMBINATION OF IMAGE AND LASER DATA S. A. Mumtaz, K. Mooney
  • COMPLEX SCENE ANALYSIS IN URBAN AREAS BASED ON AN ENSEMBLE CLUSTERING METHOD APPLIED ON LIDAR DATA P. Ramzi, F. Samadzadegan
  • EXTRACTING BUILDING FOOTPRINTS FROM 3D POINT CLOUDS USING TERRESTRIAL LASER SCANNING AT STREET LEVEL Karim Hammoudi, Fadi Dornaika and Nicolas Paparoditis
  • DETECTION OF BUILDINGS AT AIRPORT SITES USING IMAGES & LIDAR DATA AND A COMBINATION OF VARIOUS METHODS Demir, N., Poli, D., Baltsavias, E.
  • DENSE MATCHING IN HIGH RESOLUTION OBLIQUE AIRBORNE IMAGES M. Gerke
  • COMPARISON OF METHODS FOR AUTOMATED BUILDING EXTRACTION FROM HIGH RESOLUTION IMAGE DATA G. Vozikis
  • SEMI-AUTOMATIC CITY MODEL EXTRACTION FROM TRI-STEREOSCOPIC VHR SATELLITE IMAGERY F. Tack, R. Goossens, G. Buyuksalih
  • AUTOMATED SELECTION OF TERRESTRIAL IMAGES FROM SEQUENCES FOR THE TEXTURE MAPPING OF 3D CITY MODELS Sébastien Bénitez and Caroline Baillard
  • CLASSIFICATION SYSTEM OF GIS-OBJECTS USING MULTI-SENSORIAL IMAGERY FOR NEAR-REALTIME DISASTER MANAGEMENT Daniel Frey and Matthias Butenuth
  • AN APPROACH FOR NAVIGATION IN 3D MODELS ON MOBILE DEVICES Wen Jiang, Wu Yuguo, Wang Fan
  • GRAPH-BASED URBAN OBJECT MODEL PROCESSING Kerstin Falkowski and Jürgen Ebert
  • A PROOF OF CONCEPT OF ITERATIVE DSM IMPROVEMENT THROUGH SAR SCENE SIMULATION D. Derauw
  • COMPETING 3D PRIORS FOR OBJECT EXTRACTION IN REMOTE SENSING DATA Konstantinos Karantzalos and Nikos Paragios
  • OBJECT EXTRACTION FROM LIDAR DATA USING AN ARTIFICIAL SWARM BEE COLONY CLUSTERING ALGORITHM S. Saeedi, F. Samadzadegan, N. El-Sheimy
  • BUILDING FOOTPRINT DATABASE IMPROVEMENT FOR 3D RECONSTRUCTION: A DIRECTION AWARE SPLIT AND MERGE APPROACH Bruno Vallet and Marc Pierrot-Deseilligny and Didier Boldo
  • A TEST OF AUTOMATIC BUILDING CHANGE DETECTION APPROACHES Nicolas Champion, Franz Rottensteiner, Leena Matikainen, Xinlian Liang, Juha Hyyppä and Brian P. Olsen
  • CURVELET APPROACH FOR SAR IMAGE DENOISING, STRUCTURE ENHANCEMENT, AND CHANGE DETECTION Andreas Schmitt, Birgit Wessel, Achim Roth
  • RAY TRACING AND SAR-TOMOGRAPHY FOR 3D ANALYSIS OF MICROWAVE SCATTERING AT MAN-MADE OBJECTS S. Auer, X. Zhu, S. Hinz, R. Bamler
  • THEORETICAL ANALYSIS OF BUILDING HEIGHT ESTIMATION USING SPACEBORNE SAR-INTERFEROMETRY FOR RAPID MAPPING APPLICATIONS Stefan Hinz, Sarah Abelen
  • FUSION OF OPTICAL AND INSAR FEATURES FOR BUILDING RECOGNITION IN URBAN AREAS J. D. Wegner, A. Thiele, U. Soergel
  • FAST VEHICLE DETECTION AND TRACKING IN AERIAL IMAGE BURSTS Karsten Kozempel and Ralf Reulke
  • REFINING CORRECTNESS OF VEHICLE DETECTION AND TRACKING IN AERIAL IMAGE SEQUENCES BY MEANS OF VELOCITY AND TRAJECTORY EVALUATION D. Lenhart, S. Hinz
  • UTILIZATION OF 3D CITY MODELS AND AIRBORNE LASER SCANNING FOR TERRAIN-BASED NAVIGATION OF HELICOPTERS AND UAVs M. Hebel, M. Arens, U. Stilla
  • STUDY OF SIFT DESCRIPTORS FOR IMAGE MATCHING BASED LOCALIZATION IN URBAN STREET VIEW CONTEXT David Picard, Matthieu Cord and Eduardo Valle
  • TEXT EXTRACTION FROM STREET LEVEL IMAGES J. Fabrizio, M. Cord, B. Marcotegui
  • CIRCULAR ROAD SIGN EXTRACTION FROM STREET LEVEL IMAGES USING COLOUR, SHAPE AND TEXTURE DATABASE MAPS A. Arlicot, B. Soheilian and N. Paparoditis
  • IMPROVING IMAGE SEGMENTATION USING MULTIPLE VIEW ANALYSIS Martin Drauschke, Ribana Roscher, Thomas Läbe, Wolfgang Förstner
  • REFINING BUILDING FACADE MODELS WITH IMAGES Shi Pu and George Vosselman
  • AN UNSUPERVISED HIERARCHICAL SEGMENTATION OF A FAÇADE BUILDING IMAGE IN ELEMENTARY 2D - MODELS Jean-Pascal Burochin, Olivier Tournaire and Nicolas Paparoditis
  • GRAMMAR SUPPORTED FACADE RECONSTRUCTION FROM MOBILE LIDAR MAPPING Susanne Becker, Norbert Haala
  • Author Index
  • Cover

Full text

CMRT09: Object Extraction for 3D City Models, Road Databases and Traffic Monitoring - Concepts, Algorithms, and Evaluation 
66 
equipment was precisely installed by topometry. It allows the 
gathering of georeferenced 3D laser data with a very high density 
and also much information about the acquisition (see section 4). 
Figure 1: Visualization of the 3D point cloud of very high den 
sity. This raw data represents the building facade acquisition. The 
black line represents the trajectory of the laser sensor. 
The laser data are acquired under realistic conditions in dense 
urban environments. Moreover, the datasets are collected in a 
particular container related to the laser scanner, particularly in a 
range of 3D points. In this context, the data must be manipulated 
with much precaution. Here we will describe the main difficulties 
associated with 3D data. 
• The acquisition: The laser sensor data can be represented 
in two ways; either as a container with data organized lin 
early in temporal sequences of 201 points (data frames) or 
like a cloud of 3D points (georeferenced data). The condi 
tions of acquisition are very variable in realistic and dense 
urban environments. Mobile objects cause a thickening of 
the acquired cloud when the vehicle stops. Certain acquired 
points model an ephemeral surface and could be considered 
as erroneous points. Moreover, the density of the facades 
vary according to the speed of the vehicle. 
• The occlusions: pose a problem for the complete acquisi 
tion of building facades in urban environments. The occlu 
sions could be caused by two categories of obstacles, static 
or dynamic created by man-made and natural objects. The 
raw cloud may suffer from missing data due to the pres 
ence of pedestrians, trees, mobile and parked vehicles and 
many others objects (see figure 2). Alas, this inevitable phe 
nomenon affects the modeling process. 
• The laser reflectance: could cause confusions in the 3D 
data interpretation. Certain points don’t model a physical 
surface. This effect appears on a retroreflector surface. Ob 
servations sometimes show an aureole of points around road 
signs. These dispatched points represent erroneous data. 
Moreover, certain points model a different surface other than 
the surface of interest. Sometimes, the beam of the laser ei 
ther rebounds off of the outside of the window or it passes 
through the window and models the inside of the dwelling. 
These scattered points represent erroneous information for 
the facades modeling. In addition to this, other less frequent 
effects could arise due to poorly reflective surfaces. • 
• The redundancy of data: is due to many factors. The ac 
quisition is continuous even when the vehicle is stopped. 
We have adopted this strategy to facilitate the acquisition of 
a large area and to use data as common bases for our dif 
ferent projects. Therefore, raw laser data may contain many 
redundant frames. Moreover, due to sensor characteristics 
(orientation and linear scanning), we could sometimes have 
up to three acquisitions of the same facade part caused by 
the graining of the laser beam in the turns. The redundancy 
of data (points, frames, parts of the facade) presents an in 
convenience for the feature extraction techniques based on 
vote schemes or random trials. 
Figure 2: A street in the city of Paris. The building facade is 
partially occluded by trees and parked vehicles. 
Figure 3: Returned intensities of the 2D scans. The redundancy 
effect appears when the vehicle temporarily stops. The vehicle 
and the branches seem stretched. 
This brief description allows us to acknowledge several problems 
associated with the raw laser data. The 3D data should undergo 
several preprocessing steps before becoming exploitable. Thus 
we need a process robust to some outliers and noisy data. 
3 PROPOSED APPROACH 
In this section, we describe our approach which consists of two 
stages. The first stage focuses on the 3D cloud points preprocess 
ing. The second stage aims at the building footprint extraction. 
In this work, we assume that buildings have simple polygonal 
shapes. 
3.1 3D data preprocessing 
3.1.1 Partial Altering of redundant points As we have men 
tioned earlier, the laser sensor constantly sweeps the building fa 
cade even when the vehicle is stopped. Consequently, the ac 
quired raw data may contain many redundant frames due to this 
continuous acquisition. For this reason, we have defined a mea 
sure between two consecutive frames based on point-to-point dis 
tances. The redundant frames are thus detected and removed from
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Monograph

METS MARC XML Dublin Core RIS Mirador ALTO TEI Full text PDF DFG-Viewer OPAC
TOC

Chapter

PDF RIS

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Monograph

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Chapter

To quote this structural element, the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

To quote this image the following variants are available:
Here you can copy a Goobi viewer own URL:

Citation recommendation

Stilla, Uwe. CMRT09. GITC, 2009.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Contact

Have you found an error? Do you have any suggestions for making our service even better or any other questions about this page? Please write to us and we'll make sure we get back to you.

How much is one plus two?:

I hereby confirm the use of my personal data within the context of the enquiry made.