Full text: Einleitung in die Theorie der Gammafunktion und der Euler'schen Integrale

45 
4=00 
Nach (28) ist sin rc x = tc x il (1 
;.=l ' 
x 
„2 
/- 
1=00 11=00 
daraus 
Log sin tc x = Log 7t x 
V v ; 
4=1 n=l 
n=oo 4=00 
7TX 'V? 2n 1 Q ^ 1 
Log — = S 2n • x . jL, wo S 2 n = 7, — 
SiniTTX «dd n i2n 
X“ 
if VT* 
sm 7f x 
n=l 
Wir differentieren nach x 
4=1 ^ 
n=oo 
sin 7t X sin 7t\ , 7t 7t X . COS 7t\.7t „V 1 c ,2n-l 
:—s £ o 2n • X 
TT X Sin 4 TT X 
7t COtg 7t X 
1 — 7tx COtg TT X 
n=l 
11=00 
= 2^ S*n.x 2 - 
11=1 
n=oo 
= 2 S 2n • X 2n , nun mit 
n=i dx multipliziert u. 
integriert 
/»-/ 
11=00 
x cotg 7t x dx 
-/■2 
V n=l 
S 2n x 2n dx 
x — x Log (sin 7t x) -\-C Log (sin 7t x) dx =^j 2n*\~l 
n=l 
x = Va 
n=oo 
1 1 , /. «' 
x --Log(sm T 
n=oo 
2 a 2n+l 
ö 2 n X 
, T 2 cv 2 ) 2n o 
+ ) L°g ( sm ?gx) . dx= 2^71 ■ b2n ’ 
0 n=l 
somit 
1 \ i r 2 i i [* T 
— 1=—-j- ( Log(sin7rx).dx= — -J-— j Log sin y . dy, wenn?rx=y 
= -f Log2 
f ft) = ¥ - J Log 2; F ft) = i ~ ¥ Lug2 -¥ Log »■-r 
— Log 2 Tr. Nun war
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.