Full text: Theoria motus corporum coelestium in sectionibus conicis solem ambientium (7. Band)

204 
LlBEli II. SECTIO I. 
facile colligitur, valorem correctum ipsius x fieri — M—hA") — k'A\ 
valoremque correctum ipsius y = N—h[B -\- B")— UB . Calculo facto prior 
eruitur = 0,0256331, posterior = 0,7509 143. Hisce valoribus correctis iara 
hypothesin quartam superstruimus, cuius praecipua momenta haec sunt; 
U) 4- 0 . . . 
. . 7°14 45 247 
logr" . 
. . . 0,4062033 
log $cshuo 
. . 1,2094284n 
*(«'+ 
u) . 
. 262°57'38"78 
2 
. . 7° 2' 1 2”736 
4 (u — 
u) . 
. 273 29 20,73 
logr' . . . 
. . 0,4132817 
2/ . . 
• . 
. . 62 55 16,64 
c 
160° 22’ 45" 38 
2/ • • 
. . 
. . 31 19 1,49 
c 
log-r. . . . 
262 15 3,90 
2f" ■ • 
• • 
. . 31 36 15,20 
Inter 2f et 2/4-2/’ differentia 0 05 emergit, quam ita distribuemus, 
ut statuamus 2/ = 31° 19' 1 "4 7 , 2/" — 31° 36' 15'17. Quodsi iam e duobus 
locis extremis elementa ipsa determinantur, sequentes numeri resultant: 
Anomalia vera pro loco primo 289° 7'39'75 
Anomalia vera pro loco tertio 35 2 256,39 
Anomalia media pro loco primo 2974135,65 
Anomalia media pro loco tertia 35 3 1522,49 
Motus medius diurnus sidereus 7 69 "6755 
Anomalia media pro initio anni 1806 322°35'5 2 51 
Angulus cp 43757,78 
Logarithmus semiaxis maioris 0,4424661 
Computando ex hisce elementis locum heliocentricum pro tempore obser 
vationis mediae, invenitur anomalia media 3 26° 19'25"72, logarithmus radii 
vectoris 0,4132825, anomalia vera 320°43'54"87: haecce distare deberet ab 
anomalia vera pro loco primo differentia 2 /", sive ab anomalia vera pro loco 
tertio differentia 2/, adeoque fieri deberet — 320°4 3'5 4"92, sicuti logarithmus 
radii vectoris = 0,4132817: differentia 0 05 in anomalia vera, octoque unita 
tum in isto logarithmo nullius momenti censenda est. 
Si hypothesis quarta eodem modo ad finem perduceretur, ut tres praece 
dentes, prodiret X = 0, Y = —0,0000168, unde valores correcti ipsarum 
x, y hi colligerentur
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.