Full text: Theoria combinationis observationum erroribus minimis obnoxiae

THEORIA COM BIN, OBSERV. ERRORIBUS MINIM. OBNOXIAE. 
2.5 
mediatae, aequali praeciiione gaudentes, puta quarum error me 
dius — tu Vp~m'V'pzzniWp" etc,, iiue quibus pondus — l tri 
buitur, fuppeditauiiTent 
c~o, v — o, v” — o etc. 
/ x ^ v 
20. 
Problema. 
Defignantibus v, v, v" etc. functiones lineares indetermim 
natarum x, y, z etc • fequentes 
v — ax-\-by-\-cz -j“ etc. 4 l ^ 
v — a'x 4 b' y 4 c z -{“ etc. 4- l' ( (I) 
v"— dx 4- b”y 4“ e z 4- etc. 4 l" etc. ' 
ex omnibus fyftematibus coefficientium x, x, x etc., qui indefi 
nite dant 
X v 4" X v 4“ X v " "1“ etc * = x — ^ 
ita vt k fit quantitas determinata i. e. ab x, y, z etc. independens, 
eruere id, pro quo xx 4" x’ x xx 4* etc • nancifcatur valorem mi- 
nimum. 
Solutio. Statuamus 
a v 4- d v 4“ a " v " “1“ etc. — £> ) 
b v 4“ b v 4* b"v' 4" etc; — y > (II) 
c v 4~ c ' v ' 4" c ' v " 4" etc. — £ ) 
etc.: eruntque etiam £, y, etc. functiones lineares ipfarum «?, 
y, z etc., puta 
£ — x2aa 4* y^ab 4~ zl£ac 4 etc. 4“ 2 al j 
y\ — x 2 « 6 4 y 266 4- z. 2 6 c 4~ etc. 4 2 6 i ( {III) 
£ zz x 2 a £ 4- y26c 4" *2cc 4 etc. 4 2 c l etc. 3 
(vbi 2 a a denotat aggregatum a ad a' -j~ d'd'-j-etc. t ac per 
inde de reliquis). 
D
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.