THEORIA COM BIN, OBSERV. ERRORIBUS MINIM. OBNOXIAE.
2.5
mediatae, aequali praeciiione gaudentes, puta quarum error me
dius — tu Vp~m'V'pzzniWp" etc,, iiue quibus pondus — l tri
buitur, fuppeditauiiTent
c~o, v — o, v” — o etc.
/ x ^ v
20.
Problema.
Defignantibus v, v, v" etc. functiones lineares indetermim
natarum x, y, z etc • fequentes
v — ax-\-by-\-cz -j“ etc. 4 l ^
v — a'x 4 b' y 4 c z -{“ etc. 4- l' ( (I)
v"— dx 4- b”y 4“ e z 4- etc. 4 l" etc. '
ex omnibus fyftematibus coefficientium x, x, x etc., qui indefi
nite dant
X v 4" X v 4“ X v " "1“ etc * = x — ^
ita vt k fit quantitas determinata i. e. ab x, y, z etc. independens,
eruere id, pro quo xx 4" x’ x xx 4* etc • nancifcatur valorem mi-
nimum.
Solutio. Statuamus
a v 4- d v 4“ a " v " “1“ etc. — £> )
b v 4“ b v 4* b"v' 4" etc; — y > (II)
c v 4~ c ' v ' 4" c ' v " 4" etc. — £ )
etc.: eruntque etiam £, y, etc. functiones lineares ipfarum «?,
y, z etc., puta
£ — x2aa 4* y^ab 4~ zl£ac 4 etc. 4“ 2 al j
y\ — x 2 « 6 4 y 266 4- z. 2 6 c 4~ etc. 4 2 6 i ( {III)
£ zz x 2 a £ 4- y26c 4" *2cc 4 etc. 4 2 c l etc. 3
(vbi 2 a a denotat aggregatum a ad a' -j~ d'd'-j-etc. t ac per
inde de reliquis).
D