Full text: Theoria combinationis observationum erroribus minimis obnoxiae

26 
CAROL. FRIDERIC. GAUSS 
inultitudoque ipfarum £, »7, £ etc. multitudini indeterminatarum 
x, y, z etc. aequalis, puta rc. Per eliminationem itaque elici 
poterit aequatio talis *) 
x = J-\-[ctci]£-\-[ct0]7i + lciy]g-h etc. 
in qua fubfiitiiendo pro £ etc. valores earum ex III, aequa 
tio identica prodire debet. Quare itatuendo 
a [aa] -\- b [ci&] -f- c [ a y] -f- etc. — ct -j 
a [aci] b' [a(5]-j- c' [uy] -f- etc. = ct | (IV) 
a" [ ct ct ] 4* b" [ ct /3 J + c"[ ay] -f- etc. zs ct' etc. ; 
neceiTario erit indefinite 
ct v -}- et v 4~ a" v" -f- etc. =r x — A (V ) 
Haec aequatio docet, inter fyftemata valorura coeificientium x, x,' 
x" etc. certo etiam referendos efle hos x — a, x' — a', x — a etc., 
nec non, pro fyfiemate quocunque, fieri debere indefinite 
( x — ct) v -{- ( x — ct ) v + ( x — a") v" -f- etc. — A — k 
quae aequatio implicat fequentes 
( k — ct) a -f- ( x — ct ) a + (x" — a") a" -f- etc. — o 
(x — ct)h -j- (x — ct )b' -j- (x" — a')h" -f- etc, — o 
( x — ct) c -f (x —• ct'> c + ( x" — ct") c" -f etc. — o etc. 
Multiplicando has aequationes refp. per [a a], [ct/3j, [ay] etc., 
et addendo, obtinemus propter (IV) 
( x — ct) a -f- ( X— ct ) a + C k'— a') ct' -j- etc. — o 
fine quod idem eil 
xk x x x x -f- etc. ~ ctct -\- ct'ct 4~ ct"ct" -f- etc. 
4~ {x — ct) 2 4“ (x—ct') 2 -j- (x'— ct") 2 -f - etc. 
vnde patet, aggregatum xx x x -j~ x x' -j- etc. valorem mini 
mum obtinere, ii ilaluatur x~a, x' = a\ x" ~ ct' etc. Q. E. I. 
*) Ratio, cur ad denotandos cocfficientes e tali eliminatione prodeun 
tes, bos poliiiimum characteres elegerimus, infra elucebit.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.