Full text: Theoria combinationis observationum erroribus minimis obnoxiae

THEORIA COMBIN. OBSERV. ERRORIBUS M1NIM. OBNOXIAE. 37 
a tone per Et denotabitur. Manifeilo valor medius huius erroris 
fit - o, iiue error a parte conitante liber erit. At valor medius 
quadrati (Et) z 3 iiue valor medius aggregati 
//{Ex^-^zfgEx.Ey-j-QfhEx.Ez-^ etc. 
4" SS ( E y)* + Si g hE y- Ez + etc - 
h h (£iz) 2 -f- etc. etc. 
per ea, quae in art, praec. cxpofuimus, aequalis fit producto ex 
mmp in aggregatum 
//!><*]-f-2/£[ci/3] -f ef hlcty] + etc. 
4- gg [/33] 4- 8£fc[j3y] 4- etc. 
-f- h h [y y 1 4- etc, etc. 
iiue producto ex mmp in valorem functionis EI— M, qui 
prodit per fubititutiones 
£ = /» q = gf i= h etc. 
Denotando igitur hunc valorem determinatum functionis ,Q,— M 
pero;, error medius metuendus, dum determinationi t — K adhae- 
• # 1 
remus, erit zrmv pco f iiue pondus huius determinationis ”—. 
co 
Quum indefinite habeatur EI — ~~ A) {y — B) y 
4~ ( z — c )i 4“ etc., patet, co quoque aequalem effe valori deter 
minato expreifionis (x — A) f{y— B) g -f- (z—C) h -f- etc., 
iiue valori determinato ipfius t — K f qui prodit, fi indetermina 
tis x, y, z etc tribuuntur valores ii, qui refpondent valoribus 
ipfarum 7}, g etc. his f,g,h etc. 
Denique obleniamus, ii t indefinite in formam functionis 
ipfarum rj, £ etc. redigatur, ipilus partem conflantem necessa 
rio fieri zz K. Quodii igitur indefinite fit 
tzzFg-f //¿-{-etc. +K 
erit 00 zz f E g G -j- h H etc. 
30. 
Functio EI valorem Inum ohjolute minimum 21J, vt fupra vi 
dimus, nancifcitur, faciendo xzz A 3 y~B, z zz G etc., fiue £zzo
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.