Full text: From Aristarchus to Diophantus (Volume 2)

CONTENTS 
ix 
pages 298-854 
;oda esta, 
> (s-c)} 
are root 
8, 9,10 
;ylinder 
sphere 
pyram it 
298-306 
307- 808 
308- 310 
310-314 
314-316 
316-344 
316-320 
320-344 
320-331 
320- 321 
321- 323 
323-326 
326 
326-329 
329 
330- 331 
331 
331- 335 
J VLCTKOs) 
t thereof 
1 Method’ 
on-cub 
mce and 
332 
332-334 
334 
334-335 
335 
335 
336-343 
341-342 
344 
344 
345- 346 
346- 352 
347- 348 
348- 349 
349- 350 
350- 351 
351 
351- 352 
352 
352- 354 
353- 354 
. 355-439 
on 
356 
356-357 
The Synagoge or Collection .... pages 357-439 
(n) Character of the work ; wide range . . . 357-358 
(/3) List of authors mentioned 358-360 
(y) Translations and editions 360-361 
(6) Summary of contents 361-439 
Book III. Section (1). On the problem of the two 
mean proportionals 361-362 
Section (2). The theory of means . . . 363-365 
Section (3). The ‘ Paradoxes ’ of Erycinus . . 365-368 
Section (4). The inscribing of the five regular 
solids in a sphere 368-369 
Book IV. Section (1). Extension of theorem of 
Pythagoras ....... 369-371 
Section (2). On circles inscribed in the ap^rfkos 
(‘shoemaker’s knife’) 371-377 
Sections (3), (4). Methods of squaring the circle 
and trisecting any angle ..... 377-386 
(a) The Archimedean spiral .... 377-379 
(S) The conchoid of Nicomedes .... 379 
(y) The Quadratrix 379-382 
(d) Digression : a spiral on a sphere . . . 382-385 
Trisection (or division in any ratio) of any angle 385-386 
Section (5). Solution of the vevcns of Archimedes, 
On Spirals, Prop. 8, by means of conics . . 386-388 
Book V. Preface on the sagacity of Bees . . 389-390 
Section (1). Isoperimetry after Zenodorus . . 390-393 
Section (2). Comparison of volumes of solids having 
their surfaces equal. Case of sphere . . . 393-394 
Section (3). Digression on semi-regular solids of 
Archimedes 394 
Section (4). Propositions on the lines of Archimedes, 
On the Sphere and Cylinder 394-395 
Section (5). Of regular solids with surfaces equal, 
that is greater which has more faces . . . 395-396 
Book VI. 396-399 
Problem arising out of Euclid’s Optics . . . 397-399 
Book VII. On the ‘ Treasury of Analysis ’ . . 399-427 
Definition of Analysis and Synthesis . . . 400-401 
List of works in the‘Treasury of Analysis’ . . 401 
Description of the treatises 401-404 
Anticipation of Guldin’s Theorem . . . 403 
Lemmas to the different treatises .... 404-426 
(а) Lemmas to the Sectio rationis and Sectio 
spatii of Apollonius 404-405 
(ft) Lemmas to the Determinate Section of 
Apollonius 405-412 
(y) Lemmas on the Niwety of Apollonius . . 412-416 
(S) Lemmas on the On Contacts of Apollonius . 416-417 
(e) Lemmas to the Plane Loci of Apollonius . 417-419 
(f) Lemmas to the Porisms of Euclid . . . 419-424 
(r]) Lemmas to the Conics of Apollonius . . 424-425 
(б) Lemmas to the Surface Loci of Euclid . . 425-426 
(i) An unallocated lemma 426-427 
Book VIII. Historical preface ..... 427-429 
The object of the Book 429-430 
On the centre of gravity ..... 430-433
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.