Full text: From Aristarchus to Diophantus (Volume 2)

MENELAUS’S SFHÂERICA 
271 
Mene- 
lelaus’s 
tor the 
mietry, 
3m the 
ly con- 
lelaus’s 
icluded 
) much 
letrical 
1) of 
is were 
eorems 
¡.s, 1 and 
ssumed 
3gy in 
herical 
BG in 
n AC; 
irnally 
D and 
drawn 
dangle 
III. 9 and III. 10 sh^vv, for a spherical triangle, that (1) the 
great circles bisecting the three angles, (2) the great circles 
through the angular points meeting the opposite sides at 
right angles meet in a point. 
The remaining propositions, III. 11-15, return to the same 
sort of astronomical problem as those dealt with in Euclid’s 
Phaenomena, Theodosius’s Sphaerica and Book II of Mene- 
laus’s own work. Props. 11-14 amount to theorems in 
spherical trigonometry such as the following. 
Given arcs a x , a 2 , a 3 , a 4 , /3 l , (3 2 , (3 3 , /3 4 , such that 
90°^ a x > a 2 > a 3 > cx 4 , 
90°>/3 i >/3 2 > /?3>0 4 , 
and also oc 1 >(3 1 , a 2 >/3 2 , a 3 >(3 3 , a 4 >/3 4 , 
(1) If sin a x : sin a 2 
then 
sin a 3 : sin a 4 = sin ß x ; sin ß 2 : sin ß 3 : sin /3 4 , 
^ ßi 
Äg a 4 ß 3 ß i 
sin (oh+ft) _ sin (« 2 + ß 2 ) _ sin (« 3 + ß 3 ) 
sin (a 1 - ßj sin (a 2 - ß 2 ) ~ sin (a 3 - ß 3 ) 
_ sín («4 + ßj) 
~ sin (oc 4 — /3 4 ) ’ 
then 
(3) If 
then 
^2 ßi ßi m 
«s-«* ßz~ß± 
sinf^-QCg) sin iß x — ß^ 
sin (a s — a 4 ) sin (ß 3 - ß A ) 
^2 ^ ß\ ßi 
a 3 a 4 ß‘i ßi 
Again, given three series of three ares such that 
a 1 >a 2 >a 3 , ß l >ß 2 >ß 3 , 90° > y x > y 2 > y 3 , 
and sin («J - y x ) : sin (a 2 — y 2 ) : sin (a 3 —y 3 ) 
= sin (ft - y x ) : sin (ft - y 2 ) : sin {ß 3 - y 3 ) 
pus as 
ry of 
ar to 
= sin y x : sin y 2 : sin y 3
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.