MENELAUS’S SFHÂERICA
271
Mene-
lelaus’s
tor the
mietry,
3m the
ly con-
lelaus’s
icluded
) much
letrical
1) of
is were
eorems
¡.s, 1 and
ssumed
3gy in
herical
BG in
n AC;
irnally
D and
drawn
dangle
III. 9 and III. 10 sh^vv, for a spherical triangle, that (1) the
great circles bisecting the three angles, (2) the great circles
through the angular points meeting the opposite sides at
right angles meet in a point.
The remaining propositions, III. 11-15, return to the same
sort of astronomical problem as those dealt with in Euclid’s
Phaenomena, Theodosius’s Sphaerica and Book II of Mene-
laus’s own work. Props. 11-14 amount to theorems in
spherical trigonometry such as the following.
Given arcs a x , a 2 , a 3 , a 4 , /3 l , (3 2 , (3 3 , /3 4 , such that
90°^ a x > a 2 > a 3 > cx 4 ,
90°>/3 i >/3 2 > /?3>0 4 ,
and also oc 1 >(3 1 , a 2 >/3 2 , a 3 >(3 3 , a 4 >/3 4 ,
(1) If sin a x : sin a 2
then
sin a 3 : sin a 4 = sin ß x ; sin ß 2 : sin ß 3 : sin /3 4 ,
^ ßi
Äg a 4 ß 3 ß i
sin (oh+ft) _ sin (« 2 + ß 2 ) _ sin (« 3 + ß 3 )
sin (a 1 - ßj sin (a 2 - ß 2 ) ~ sin (a 3 - ß 3 )
_ sín («4 + ßj)
~ sin (oc 4 — /3 4 ) ’
then
(3) If
then
^2 ßi ßi m
«s-«* ßz~ß±
sinf^-QCg) sin iß x — ß^
sin (a s — a 4 ) sin (ß 3 - ß A )
^2 ^ ß\ ßi
a 3 a 4 ß‘i ßi
Again, given three series of three ares such that
a 1 >a 2 >a 3 , ß l >ß 2 >ß 3 , 90° > y x > y 2 > y 3 ,
and sin («J - y x ) : sin (a 2 — y 2 ) : sin (a 3 —y 3 )
= sin (ft - y x ) : sin (ft - y 2 ) : sin {ß 3 - y 3 )
pus as
ry of
ar to
= sin y x : sin y 2 : sin y 3