Differenzialformel.
282
Differenzialformel.
e die Basis des natürlichen Systems =2,7182 81828...
m den Modul des Briggschen Systems = log br e — 0,43429448
1 1
so ist
81. y = e z
82. y = a~
83. y — 10*
logn 10 2,3025 8509..
dy = e : 0s
dy = a z logn a 0s
Oy = aZ ÜZ ' ln 10 = 2 ’ 3025 bo09 •••"'■ 05 = 0,43429448...
1
II
Si
oo
dy = — = s- 1 05
85. y = Zoy 6r s
JV cs, 02 02
J * 2 ln 10 2,3024 85 .. 2
= log br e • — = 0,43429 ... —
* 7»
86. y = Zn (a ± 6s)
c, ± 6 02
Ö?/ = —¡r
a. ± 62
87. y = ln (as ± 6z. 2 )
(a ± 262) 02
8 »=-
88. y = Zn (s -f ] a 2 s 2 )
9,= *
]/a 2 + 2 2
89. y = ln (2 + ]/jj* — a 2 ) dy =
j/2 2 — a 2
90. y = Zn (2 — ]/s 2 — a 2 )
dy =
]/2 2 — a 2
91. y = Zn — (a-fj/a 2 +2 2 )
7»
^ «05
Oy =
2 J/a 2 + 2 3
92. y = ln — (a—]/ö 2 — s 2 ) dy = -———
5 2|/a 2 —z 2
93. y = ln (a + 2) (6 + 2)
„ 02 02 a + b -f 2z- _
!J ~ a + 2 b + 2 - (in -f 2) (6 + z.) C '
94. y = ln(a — 2) (6 — 2)
95. y — l?i —■ — Z
a — s
, a — 2
96. y = ln ;—
J a-f 2
. 2 — a
97. 1/ = Zn —■—
■ 2 + a
» 2 -f a
98. y = Zn
2 — a
02 02 «4-6 — 22 „
a — 2 6 — 2 (a — 2) (6 — s)
~ 2a 02
2a 02
8 »
„ 2a 02
8 »=iw
» 2a 02
8 »= ä »-„>
99. y = (Zn 2)«
100. y = z m ln 2
101. y =-- 2"' (ln 2 ]
m \ m /
0y = (Zn 2) 1 • —
0y = [m Zn 2 + 1] 2 1 02
( 0y = 2 ff| - 1 Zn 2 02
_s
II
5*
cd
0
05
oy = —i—
2 Zn 2
103. y = l • br (l • br • 2)
(log-bre) 2
8 ^ s * /öj - Ar s 8 "
104. y = sin 2
0y = COS 2 • 02
0y = — SIW 2 02
dy = sec 2 s 0s = (1 + z# 2 2) 0*
104. y = sin s
105. y = cos s
106. y = tg z>