106
MISCELLANEOUS EXAMPLES ON CHAPTER III
41. Prove that
sin?i0 = 2 ,l ~ 1 sin 0 sin ( d + ~ ) ... sin -¡0 +
(«-1)'
I-
[Put x—a — 1 in Ex. XXY. 8, and change 0 into 20.]
42. Prove that
7r 2tr 7 TV . 1
cos — cos ^ ... cos Ts = Ì28 *
43. Prove that tan ~ tan ~ ... tan = 1,
ATI ATI Alii
44. Prove that
(l+a?) n —(1 —#)"
2;r
=A ( ¿r 2 + tan 2 — ) ( x 2, +tan 2
# 2 + tan 2 ),
where A = 1, 1) if n is odd, and A=n, r — \n— 1 if % is even.
45, If 1 j n ( x + tan 2 - j is expressed in the form
2 A r { x+tan 2
2» + l/ ’
% being a positive integer, show that
( — l) r_1 2 . «
A r =
Oil! _ - LUO ,, , •
2n + l 2« + l 2?i+l
{Math. Trip. 1905.)
[Apply the ordinary rule for partial fractions: it will be found that
A r = {- l) r_1 2 sin 2 -
rn » kir
n cot 2 ;
2w + l ‘ 2?i4-lfc=i 2?i + l’
and Ex. 40 can be used to obtain the given result.]
46. Show that
f(2r + l) 7T ] . 1N
1 v — a }■ =71 COS {n— 1) a sec na.
I 2« J
{Math. Trip. 1907.)
. (2r + l) n
2 sin X—-—— cosec
r=n 2 n
[The right-hand side is
l +x
x n +x~ n ,r 2n + l ’
where x=cos a + i sin a — Cis a. The roots of x 2n + 1=0 are
Gi^- 2 ^ (r=0, 1, 2n — \).
Split up the right-hand side into partial fractions of the form
/{*-
. (2r+l)«-
Cis
2 n
}•
It will be found that A r = —i sin — Cis ^ —. To get the result
All Ait
in the form given we must associate the terms in pairs {r, n+r) where
r = 0, 1, ..., «-!•]