Full text: A course of pure mathematics

106 
MISCELLANEOUS EXAMPLES ON CHAPTER III 
41. Prove that 
sin?i0 = 2 ,l ~ 1 sin 0 sin ( d + ~ ) ... sin -¡0 + 
(«-1)' 
I- 
[Put x—a — 1 in Ex. XXY. 8, and change 0 into 20.] 
42. Prove that 
7r 2tr 7 TV . 1 
cos — cos ^ ... cos Ts = Ì28 * 
43. Prove that tan ~ tan ~ ... tan = 1, 
ATI ATI Alii 
44. Prove that 
(l+a?) n —(1 —#)" 
2;r 
=A ( ¿r 2 + tan 2 — ) ( x 2, +tan 2 
# 2 + tan 2 ), 
where A = 1, 1) if n is odd, and A=n, r — \n— 1 if % is even. 
45, If 1 j n ( x + tan 2 - j is expressed in the form 
2 A r { x+tan 2 
2» + l/ ’ 
% being a positive integer, show that 
( — l) r_1 2 . « 
A r = 
Oil! _ - LUO ,, , • 
2n + l 2« + l 2?i+l 
{Math. Trip. 1905.) 
[Apply the ordinary rule for partial fractions: it will be found that 
A r = {- l) r_1 2 sin 2 - 
rn » kir 
n cot 2 ; 
2w + l ‘ 2?i4-lfc=i 2?i + l’ 
and Ex. 40 can be used to obtain the given result.] 
46. Show that 
f(2r + l) 7T ] . 1N 
1 v — a }■ =71 COS {n— 1) a sec na. 
I 2« J 
{Math. Trip. 1907.) 
. (2r + l) n 
2 sin X—-—— cosec 
r=n 2 n 
[The right-hand side is 
l +x 
x n +x~ n ,r 2n + l ’ 
where x=cos a + i sin a — Cis a. The roots of x 2n + 1=0 are 
Gi^- 2 ^ (r=0, 1, 2n — \). 
Split up the right-hand side into partial fractions of the form 
/{*- 
. (2r+l)«- 
Cis 
2 n 
}• 
It will be found that A r = —i sin — Cis ^ —. To get the result 
All Ait 
in the form given we must associate the terms in pairs {r, n+r) where 
r = 0, 1, ..., «-!•]
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.