[ XXXVI ]
INTRODUCTION.
('7)
llo**
*[x-y)
§ IV.
2 sin 2 or 2 sin 2 2 x . 2 sin 5 3o7
Sh2p
log sin or
logcosx
2 sin 2 07
Sh 2p
2Sh4p
2 (/COS 2 07
Shxp
2 q sill 2 X
Sil2p
2sin 2 207
3 Sh 6 p
2 </ 2 sin 2 ‘IX
2SI14 p
2f/ sin 2 207
2Sh4p
2 sin 2 3 X
-f-.
2 q 3 COS 2 3o7
3Sh6p
2 (f sin 2 3o7
3 Sh 6 p
+■
+ ■
+■
2Sh4p 3Sh6p
sin2xsin 2y , sin 4^7sin4J sin 6 07 sin 6y
Sh2p
+•
28b 4p
3 Sh 6 p
.,\ X +X) 1 ,_sin(o7+jr) rysin2.rsin2j 7 2 sin 4-r sin 4j (/ 3 sin6o7sin6r
“ ° s - — Qh O n oShXn 3fthitn
3-, [x—y) 2 IO °sin(o7—y)^ Sh2p 2Sh4p -l ~ 3Sh6p
1 (r S- 2 (x-hr)_ I. ^ cos(-r-f-j) g sin 207sin iy (/ 2 sin4.rsin4j 7 3 sin6P7Sin6j
2 °^3 2 (o7—y) 2 0 ° cos [x—-y) Sh 2 p 2Sh4p 3Sh6p
x 3 :i [x+y] sin207sin iy sin ^x sin 4 y sin 6 07 sin 67
2 Sh ‘ 2 P
3- [x +7O
(*9)
—log 0 . ..
21 3- (¿7 —yi)
L\oa*<
2 i ° 3, (yi + X)
1 lo ~M*-.rO
2/ :0 3 ;2 (p7+j/)
I 07 — W
arc tang
2 Sh 4 p
V {x, yi, r/)
3Sh6p
1 , 3,
—• log r 2
21 3.,
V (07, yi, q)
1" [07 Ip — r) i, <7!
o: + arc tang : /— J ! . l \
V [or, [p—r)i, 7]
fo7, ( p — ri x, q 1
07 — arc tang -. ,-p—yi-—^4—M
k z [07, (p—y)h q\
K {x, yi, q)
\Voyez form. (15).]
(07 -¡-yi
— arc tang
K i- r > ju 7)
Y.
(20)
Dj; log 3 X :
D x 10g3, 07 :
D e log 3 2 07
3 x
3, x
2
3,07
(2 (7 sin 2.37— 4'7 4 sin407 —(- 6</ s sin6o,—K..) (*),
/X X xi \
{ q 4 COSX — 3 q 4 COS3o7 -f- 5</ 4 COs5o7 (- . .
/ 1 9. li. \
-V </ 4 sino7 + 3(/ 4 sin3o7 + 5q 4 sin5o7 + /,
D x log3 3 07 — — (2 q sin2.37+ 4 q k sin 4-27+ 6 ( f Sin607 —p-
3 3 07
, Sin 207 , sin407 . sin 607
D„ !og3 07 = 2 77; h 2 -57—7 h 2 -57-75 K • • >
Sh2p Sh4p Sh6p
Sin207 ,sill407 , 3 Sin607
D x log3,07 = C0t07 + 2<7 g| ^ ■ + 2q + 2(/ 3 7.1 ■ +.
Sh2p
Sh4p
Sh6p
Sin 207 ,sin4^7 , sin 6 07
D x log3 2 07 = — tang07 — 2q + 2<7* CTT77 — 2 7
Sh2p
Sh 4 p
Sin 207 sin 4 07 Sin 6 07
D log3.,07 = — 2 ■sr [- 2 -57-7 2 nj-R •
x D 3 Sh2p Sh 4p Shop
Sh6p
n J7 «2 K
(*) D,log3* D log0 (m) Z(u) (Jacobi).