TEMPORARY ASSURANCES.
165
The number of annual payments will be t, consisting of an imme
diate payment and of a temporary annuity for t— 1 years ; the single
premium must therefore be divided by
1 + «
(nr, mi, r»2» &c.)
= 1 —r*p
+ a-
~x\
(m, mi, ma, &c.), t (m, mi m2, &c.)
n
(m,mi.ma, &c.) .
0*
Art, 19*7. A L =r{ 1—r*p T -r4- 1—(1—r)a—
Cm, mi, m2, &c.)^ 1 x (m,
adding and subtracting 1 —r\'P (m t ’ we ^ ave
1 — r*p AL — (1— r‘p- ~ ) + ?'( 1 —r l p — )
1 (m, mi, mg, &c.), I (m, m,, raj.&c.), t' ' 1 (m, Ac.), * y
(1 ~ r ) a - t
Cm, nip 77*2»
1 — r' y?
(m, nip m2» &c.)j £
« -(l-r)(l—r'y;
(m, mp m2»
(m, mj, mg, Ac.)
1 r P(m,m l ,m 2 ,&c.),t (1 ?') { 1 r< P (m . mi> } *
which divided by the quantity
1 — r‘p
•T n-
1 - T~ LI .. — a
(m, 77^2, &c.), t (m, mi, mg, &c.) ^
gives for the annual premium
1-r'p
(m, mq, mg, &c.), £
I — rp
- O -r) 5
(tn, nip mg, &c.), £ C m > m l> w 2» & c 0 .
when there is only one life it becomes
1 —r'.p^t
1 +
l—r*.
(I-r)
L
I'm
(1 -r).
By Davies’s method-
The divisor 1 + « (m) = 1 . (Art. 139); the formula for
the annual premium is therefore (Art. 198)
D„
—M
m lvl m+i
D m N m _i—N m+/ _i N m _i
or, (Art. 199)
r (N m _i—N,„ +< _i ) — (N m —N m+t ) D„
D.„
N m —N m+/
N,„_!—N, n+< _i N m _i N m+< _i
201. Rule. To find the single premium.
Midtiply the present value of £l, due at the end of the given period