Full text: On the value of annuities and reversionary payments, with numerous tables (Vol. 1)

E 
REVERSIONS.. 
49 
Let i' be a quantity found by trial somewhat near the true value of i, 
and let i “ i' 4 x, then by substituting this value in the above equa 
tion, it will become 
(1 4 i' 4 z)~ d -(I + V 4 2 )- (d + B) = ^ (¿' 4 z); 
by the binomial theorem, 
{ (1 + V) 4 zj~ d = (14 i') 
d (d 4 1) 
- d (1 4 * 4 
(1 4 ¿')" (d + s) z 2 —& c. 
{(1 + V) + z} - ( d + n) = (1 4 ¿')" (i+n) - (d 4 n) (1 + 0- (rf+n+1) 5r 
(d 4 n) (d + n + 1) 
+ 
(1 + ¿')“ (d+ " +2) 2 2 — &C. 
subtracting the second series from the first and rejecting the terms 
affected with the second and higher powers of z, we obtain 
(1 4 i’)~ d - (1 + ¿')“ Cd+n) —d( 1 + ¿')~ (d + 1) 2 
4 (d 4 n) (1 4 ¿') _(d+B+1) 2 = — 4 —; 
by transposition, — 4 d( 1 -f ¿ / )“ c<, + 1) z—(rf-f-n) (l + i') -(d+ ” +1) ^ 
= (I +i')- d - (i + ¿')~ (d+n) - 
pi 
dividing each side by — -f-rf(1 -f- ¿ , )“ (d+1) — (d + n)(1 4 ¿')“ (d+ ” +1) 
Oj 
we obtain 
(1+0 
(i4f')- (<, +*> _ IL 
Z — 
4- d (1 + f') _(d + 1) — (d + n) (I + ¿ , )~ (d+n+1) 
Example. At what rate of interest will £645.174 purchase an 
annuity of £100 to be entered upon after the expiration of 8 years, and 
then continue 10 years? 
By a few trials we find the interest is between 3 per cent and 31,- per 
cent; let us then make i' — .03. 
1 4 V =1.03 d = 8 n = 10 a = 100 p — 645.174 
Table4, (1.03)~ 8 = .789409 = (1 4 i')~ d .03 
(1.03)- 18 = .587395 = (1 4 ¿')-( rf + n) 100)1973552 
.202014 
.193552 
,193552 = *-£ 
. 008462= (1 4 ¿')~ ri — (1 4 ¿')~ (d+n) — 
p 645.174 
~ -=7iT“ = 6.45174. 
a 100 
i'p
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.