. IH . iH -O L.S , fH ,C
^ fe; fc; ^ ^ ^ fe;
24
also B x = 2.76 (1.015) = 2. 801
II. m
= 2.5702
= 0.0012
= 0.0024
= 1.5702
III. m =
B 0 = 2.76 2 (0.110) = 0.838.
2
2. 801, ß — — giebt mit Osleliigen Logarithmen:
ft. =
+ 1.5702 ft! + ft 0 = 0.0012
— 0. 1053 &! + 2.5702 ft 0 = 0.0024
+ 0.0001
+ 0. 0010
also B x = 2.801 (1.0001) = 2.80128
ß 0 = 2. 801 2 (0. 1063) = 0.83375.
2.80128, ß= 0.106 mit 7stelligen Logarithmen:
= 2.569797
= 0.000327
= 0.000551
Pl = 1.569797
+ 1.569797 ft,, + b 0 = 0.000327
— 0.106000 ftj + 2.569797 ft 0 = 0. 000551
b 1 = + 0.00007
ft 0 = + 0.00022
daher B x = 2.80128 (1.00007) = 2.801476
ß 0 = 2.80128 2 (0.10622) = 0.833525.
Man hat daher x“ 2 — 2.801476 x + 0.833525 = 0
hieraus x = 1.400738 + V 1* 128541944644
und also w = — 0.599262 + 1.062329
d. h. w = + 0. 463067
= — 1.661591.
Daher die dritte Wurzel
x = 7.198524
folglich w = + 5.198524.
Wir haben mithin die drei Wurzeln:
+ 0.463067
— 1.661591
+ 5.198524
In §. 2. war das zweite Beispiel
x 3 — 9 x 2 + 25 x — 26 == 0,
also hat man nach dem Schema in §. 19.
Drohisch (in seinem Werke
S. 297 u 298) hat:
+ 0.463077
— 1.661600
+ 5.198523.
iV 3 = —
m
25
1
Pi
No.
Ni
No
N*-ß
26
+ Pi h +• b o = ^
— ß &i "f b 0 = N 0