Full text: Grundzüge der antiken und modernen Algebra der litteralen Gleichungen

Vierter Abschnitt. Substitutionsmethoden. I. 
(7) ab — 9 c = 0 ; 
(8) b 2 — За с — 0 ; (quadratische RetroVariante) 
(9) I. 2a 3 — 9ab -j- 27c = 0 ; (kubische Variante) 
II. 2 b 3 — 9abc + 27 c 2 = 0 ; (kubische Retro Variante) 
(10) a 3 — 27 c = 0 ; 
(11) a 3 c — b 3 = 0 5 
(12) a 4 — 2a 2 b — 12ac + b 2 = 0 ; 
.(13) a 4 - 4a 2 b -f 6ac + b 2 = 0 ; 
(14) j (ab — 9c) 2 — ~ (а 2 — 3b) (b 2 — 3ac) (Discriminante D 3 ) 
= i(2a 3 - 9ab + 27c) 2 - - 3b) 8 
= 4a 3 c — a 2 b 2 — 18a&c -J- 4b 3 -f - 27 c 2 = 0 ; 
(15) a 2 c 2 — 4a& 2 c 6&c 2 + 6 4 = 0; 
(16) I. a 3 c-a 2 b 2 -6abc + M 3 = 0-, 
II. a 3 c + 9c 2 — Gabe -f- b 3 = 0 ; 
(17) ab — c = 0 ; (Geminante 6r 3 ) 
(18) a G — Ga^b -f“ 6a 3 c -j- 9a 2 b 2 — 9abc — 3b 3 = 0 . 
c. Reducenten der biquadratischen Gleichungen: 
(19) а — b — c = 0 ; 
(20) а = c = 0 ; (Kanonizante) 
(21) I. a 3 — 4ab ,-f- 8c = 0 ; (kubische Variante) . 
II. c 3 — 4 bcd + 8ad 2 = 0 ; (kubische Retrovariante) 
(22) a 2 d — c 2 = 0 ; 
(23) a 2 d - 4bd + c 2 = 0 ; 
(24) a 2 d — abc c 2 = 0 , (Geminante — 6r 4 ) 
(25) a 4 - 8a 2 b + Ш 2 — G4d = 0 ; 
(26) a G — Ga i b -f- 8a 3 c + 8a 2 b 2 — 8a 2 d— lGabc -f- 8c 2 == 0; 
(27) a G — 8a*b -f- 64a 3 c — lGSa 2 d -f- 2048bd — 512c 2 = 0 ; 
(28) a 4 — 4a 2 b -j- 8ac — 16c? = 0 ; 
(29) b 2 — 3ac + 12i? — 0 ; (quadratische Invariante 12 ¿f)
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.