106
SERIES
Example 2.
Неге
А ~Х , 1+ 1 + ... + 1\ X n *e ff n
Qi
(l+ï+ ••• + !)
п^е^ 2 п
log^—
a n ïi _ — log п + р log п+Н п
Ipt
Ipi
= ^— ! И- ~ 1 + - ! = /X 00 by 81, 6).
l 2 n I log п J
Hence A is convergent for р> 0 and divergent for /¿<0. No
test for p — 0.
But for p = 0,
log
n a n nlpi _ H n — l x n — l 2 n
V2 —
£
CO
^0
*г п
+
51,
1
rH
En
l
Ipi
Ipl.
= -QO,
since l 2 n > l s n. Thus A is divergent for p = 0.
94. A very general criterion is due to Kummer, viz.:
Let A = a x 4- a 2 + •■•be a positive term series. Let k v k 2 , ••• be a
set of positive numbers chosen at pleasure. A is convergent, if for
some constant k > 0.
*Wi>* » = 1,2,-
«»+1
A ¿s divergent if
R =l+r+
к л k„
is divergent and
П "2
K„< 0
n = 1, 2,
For on the first hypothesis
^ C&i^i ^2^2)
<*3 < - (k 2 a 2 &3Я3)
Ы)-