+
202
POWER SERIES
Thus F give rise to the double series
I) = ^4-qq + A^(x Xq) + A.q%(x ^q) 2 +
+ A 'l0 + ^ilO - x o) + A 'n(. x - x o) 2 +
+
where
- (-!)” a
. te •
n 1
The adjoint series to f n (x) is, setting £= \ x — a? 0 1
<£»(£) =
^ +
a 2»| 2
,„ ! \1 + a n :z 0 (1 -f a n x ü ) 2 (1 + a n x 0 ) 3
This is convergent if
<1 or if £<x 0 ,
that is, if
1 + a n x 0
0<x<2x 0 ,
For any x such that x 0 < x < 2 x Q , f; = x — x 0 .
Then for such an x
</>» = *
n ! 1 + a n (2 x Q — x)
and the corresponding series
=£(/>„
is evidently convergent, since $„< — ■
n !
We may thus sum D by columns; we get
F(x) = 2 B K (x - x 0 )
where
K=0
_ y(-l) n+K a nK
»=0 "■ ! n + «%,)'*'
The relation 1) is valid for 0 < x < 2 æ 0 .