Object: Lectures on the theory of functions of real variables (Volume 2)

Ji'+ljJ+f i-^V.-o. (11 
BESSEL FUNCTIONS 
239 
2. The following linear relation exists between three consecutive 
Bessel functions: 
For 
Jn-t 
j n+1 O) = ~ l J n (x) - <4-10) n > 0. 
X 
•2s+71—1 
y\7l 1 
+ 2(-l) 
x 
2 n ~ l (n — 1)! t=i J 2 n+2s_1 s! (n — 1 + «)! 
j n+1== -^(-iy. 
s=1 
Hence 
«^-1 + '^n+l 
~2s+n—1 
r n—1 
■ + S(-1)< 
2 n+2s “i(s — 1)! (n + s)! 
L 
1-1 (s!( n— 1 
(5 
(6 
a 
v,2s+ra—1 
2 n_1 (w—1)! i v y 2 n+2s_1 \ s\n— 1 +s)! (s — l)!(w+s)!) 
n—1 00 _ ^¿s + n—1 
* - + n2(-l)* 
n 
2»+ 2 *-:i s ! (w + s) 
(8 
™2s+n 
— — 1 V — • 
xo K J 2" +2 - 1 s!(w + s)! 
2 n T s \ 
= ^«O). . 
X 
3. We show next that 
2/^)= ( 7 n _ 1 (2:)-J n+1 (a:) w>0. 
For subtracting 7) from 6) gives 
T —T xnl Vf ^ + 
n-i ' n+1 — 2 n_1 (w — 1)! i 2 n+2s ~ 1 s!(w + s)! 
2 n+2s-1 «!(w + s)! 
= 2 J' n . 
From 8) we get, on replacing e/„ +1 by its value as given by 5): 
^(aO=-V.(*)+ *-,(*), »>0. (9 
X 
From 5) we also get 
•iW=*i,W-4,W «>0- 0° 
X 
4. The Bessel function satisfies the following linear homo 
geneous differential equation of the 2° order:
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.