Ji'+ljJ+f i-^V.-o. (11
BESSEL FUNCTIONS
239
2. The following linear relation exists between three consecutive
Bessel functions:
For
Jn-t
j n+1 O) = ~ l J n (x) - <4-10) n > 0.
X
•2s+71—1
y\7l 1
+ 2(-l)
x
2 n ~ l (n — 1)! t=i J 2 n+2s_1 s! (n — 1 + «)!
j n+1== -^(-iy.
s=1
Hence
«^-1 + '^n+l
~2s+n—1
r n—1
■ + S(-1)<
2 n+2s “i(s — 1)! (n + s)!
L
1-1 (s!( n— 1
(5
(6
a
v,2s+ra—1
2 n_1 (w—1)! i v y 2 n+2s_1 \ s\n— 1 +s)! (s — l)!(w+s)!)
n—1 00 _ ^¿s + n—1
* - + n2(-l)*
n
2»+ 2 *-:i s ! (w + s)
(8
™2s+n
— — 1 V — •
xo K J 2" +2 - 1 s!(w + s)!
2 n T s \
= ^«O). .
X
3. We show next that
2/^)= ( 7 n _ 1 (2:)-J n+1 (a:) w>0.
For subtracting 7) from 6) gives
T —T xnl Vf ^ +
n-i ' n+1 — 2 n_1 (w — 1)! i 2 n+2s ~ 1 s!(w + s)!
2 n+2s-1 «!(w + s)!
= 2 J' n .
From 8) we get, on replacing e/„ +1 by its value as given by 5):
^(aO=-V.(*)+ *-,(*), »>0. (9
X
From 5) we also get
•iW=*i,W-4,W «>0- 0°
X
4. The Bessel function satisfies the following linear homo
geneous differential equation of the 2° order: