74
IMPROPER MULTIPLE INTEGRALS
Now for any n
Ca< C fa< fa
—2Í« S'» J Z n J Kn
Hence ^f=iim f Ca = a um ft
n— oo «/93 n=» c/58
or
a = lim fg„.
í¡,=oo «£53
(15
Now for a fixed n, 7 may be taken so large that for all points
of 53,
e v >e„.
Hence
Hence
Hence
21
(5 > lim (L > (L.
= fe> fr> r<s„ = H.
*7» JjQ JjQ
21= f r,
¡733
and thus r is integrable in 53.
This result in 14) gives, on using 58, 3,
f fff=f (*/+№
Jw, J(S J¿8 ./(£
(16
(17
From 12), 13), and 17) follows 1).
77. As corollaries of the last theorem we have, supposing 21 to
be as in 76,
1. Iff is integrable in 21 andf> — (7, then
f /= f ff-
Iff <0-, then r(' r j
J33 Je
2. Iff>—G- and I is divergent, ¿Aen
•Alf
///
are divergent