5.
CONTENTS
Continuation. Proof by Line Integrals ..<•••
Xlll
PAGE
266
6.
The Iterated Integral •
268
PAGE
7.
Extension to Triple Integrals
270
. 208
8.
Continuation. Proof by Surface Integrals
271
. 211
9.
Application to Hydrodynamics and Elasticity •
275
10.
Flux across a Surface
276
. 213
11.
Continuation. Proof of the Formula
279
. 213
12.
The Equation of Continuity
286
iAT
. 215
. 216
1.
CHAPTER XIII
VECTOR ANALYSIS
Vectors and their Addition
288
. 220
2.
The Scalar Product
292
. 222
3.
The Vector Product ........
294
4.
Rotation of the Axes; Direction Cosines ....
297
. 225
5.
Invariants ..........
299
6.
Symbolic Vectors. Curl
301
. 226
7.
Green’s Theorem and Stokes’s Theorem in Vector Form
303
8.
Curvature and Torsion of Twisted Curves. Frenet’s Formulas
304
. 228
9.
Notation ..........
. 307
. 232
. 233
. 237
1.
CHAPTER XIV
DIFFERENTIAL EQUATIONS
Ordinary Differential Equations
. 309
. 241
. 243
. 245
. 246
. 247
. 248
. 249
2.
I. Equations op the First Order
Separation of Variables ........
. 311
3.
Linear Equations .........
. 312
4.
Homogeneous Equations .......
. 313
5.
Equations of the Second Order with One Letter Absent
. 316
. 250
. 251
6.
Applications
The Catenary
. 317
7.
Continuation. Discussion of the Catenary ....
. 322
8.
Rope round a Post... 1 .... .
. 324
OF
9.
Heavy Strings on Surfaces, Rough or Smooth
. 326
10.
Problems in Kinematics .......
. 330
. 253
. 257
. 259
11.
II. Linear Equations op the Second Order, and Higher
Elementary Theorems
. 333
. 263
12.
Constant Coefficients ........
. 336