36
CALCULUS
Hence, finally,
i'xtan-dx = tan-?î±ü?_ log [o , + (a , +
J cl* 2 a 2 4
CL* 2 a
The student may like to evaluate
Çx? tan- 1 «!^ 2
J a 2
dx.
EXERCISES ON CHAPTER
Evaluate the following integrals, using the methods, but not the
formulas, developed in the text.
r xdx 2 Ç(e T - e~*) 2 dx 3
J Va 2 — a? 2 .y e 1
J
/
/•
cos æ 2 da;.
4 i sin(7rV.9 — 8) ds 5 / 2 cos ax — sin ^ g /*i
\/s CL -j- /3 fj
e *
dx.
e~ x dx
e z + e~ x
/Vïtss* 1 9 -
f* dx
J nr. 1 iter nr%
X log X 2
cos ddd
cos 2 9
13.
15
18.
20
22
25
J -—• 11. / iccot 2 a;dic. 12. / (
5 — sm 2 0 J J
/ ædæ /*,
. • 14. / log (1 —(- a? —f— a? 2 ) da?.
(a 2 + a: 2 ) V4 -f- x 2 J
f T- • 16. j x 1 tan -1 x dx. 17. f J?-—.. .
J 1 + tan 9 J J (i _ x y
f dx 19 r d9
J (1 + x 2 ) tair 1 x ' J sin 2 9 - 2 cos 2 0*
a; sin -1 ^^ dx. 21. J e~ x * (2 x — 3 x?) dx.
j*cos 5 ddd. 23. y*x tan ttx 2 dx. 24. j x ^ x ,
fsing-cose dd 26 r
J 1 + smd +• cos 0 J
dd. 26. I sinpx cos qx dx.
28 r (1 + a cos 0) dO /*
J (1 + a 2 )cos 2 0 +1 29, J ( a + x ) lo S (* + Va 2 - x 2 ) dx.
30. Çsin mO sin nO dO. 31. /* V« 2 + l» 1 + a 2 sin 2 9 ^
J , J cos 9
cos 9