178
continere eandem irrationalitatem. Cujus rei demonstratio, quam
innui, pendet ab hac consideratione generalissima, et, ni fallor,
momentosa; quod terminus integralis et differentia, vel summa et
terminus debent habere eundem numerum radicum seu valorum;
quoniam quivis valor termini suum habebit valorem differentiae re
spondentem. Hinc etiam duxi considerationes, quibus multum con
trahitur quadraturarum inquisitio; sed prosequi non vacavit, etsi
talia dudum consideraverim. Si Tibi aliquando vacavit eo advertere
animum, libenter mittam qualescunque meas in eam rem conside
rationes. Notavi sane ibidem osculationes revocari ad differentias
differentiarum; visus tamen est usus calculi reciproce differentialis
hic non contemnendus.
Non miror, si diu pressisti considerationem Tuam aequatio
num differentialium mechanice construendarum*); possum dicere
me quoque ibi speravisse aliquid ad constructionem plusquam me
chanicam. Videbam scilicet generaliter, data aequatione differentiali
primi gradus, dari curvas algebraicas quaesitae occurrentes in
punctis, ubi curva quaesita inclinationes habet datas, seu angulum
datum facit ad horizontalem vel verticalem. Sperabam ergo motum
excogitare puncti per has curvas secundum leges inclinationis traji
cientis; sed nondum successit. Res huc redit: Curvis ordinatim
positione datis punctum ita per eas continue trajicere, ut ubi illis
occurrit, habeat angulos ordinatim datos ad horizontem. Hoc ef
fecto, haberetur constructio omnium curvarum datarum per aequa
tionem differentialem primi gradus.
Egregie notasti, more Tuo, posse definiri lineam ordinatarum
transeuntem per omnia puncta flexus omnium curvarum differen-
tialitate eadem datarum; quin et poterit linea definiri transiens per
omnia puncta maximae earum vel minimae latitudinis; nam eo casu
evanescunt differentiae, angulusque nullus est vel rectus. Eamque
in rem complura notare memini, sed non tamen ideo ipsum curvae
transcendentis quaesitae punctum incognitum definitur; puto tamen
aliquando rem successuram, ubi constabit, lineae ex. gr. per omnia
puncta maximae latitudinis transeuntis concursum cum curva quae
sita, cujus est ea latitudo, non intersectionem esse simplicem, sed
contactum vel osculum vel saltem esse anguli dati.
*) Modus generalis construendi omnes aequationes differentiales
prirai gradus. Auctore Joh, Bernulli. Act. Erudit. 1694 p. 455.