Full text: Briefwechsel zwischen Leibniz, Jacob Bernoulli, Johann Bernoulli und Nicolaus Bernoulli (1. Abtheilung, Band 3)

3? 
1 
H 
2 
Polest. 
1 = 1+ 0-1-04-0+0 
xx 
yj a 4 —3 
XX lx 6 1.3x 10 1.3.5x 14 1.3.5.7x 18 
etc. 
aa 2 a 6 
2.4a 10_r 2.4.6a 14 2.4.6.8a 18 
•8 
+ -7 + 
12 v 
TT ~ 
11 2 a 
16 x 
Tß 4 ~ 
16 a 
20 
etc. 
•8 
□ a 4 
x _ = i_ + 
x 4 a 8 
2x12 3 X 16 4 x 2o 
a 12 ■ a lb a 2U a . 
X 1 * 3x 1 6 6x 20 10x 24 15x 28 
-j l. u 4 —— etc. 
ai 2 + a 16 a 20 ^ a* a ^ 
4- 
.16 
-4- 
,20 
4- 
ox 
24 
,24 
etc. 
12 
C.a 4 
24 
,28 
hae series interpolentur inter 0 et l am potestatem, ut habeatur 
potestas dimidia 
xx 
^a 4 
quare dy 
_ xx lx 6 
T aa 2a 6 
1.3.5x 14 , 1.3.5.7x 18 t 
+ 4^—. „ ^ etc. 
1.3x 10 
2.4a 10 274.6 a 14 ’ 2.4.6.8a 18 
V a 
xxdx xxdx . l.x«dx + eorum- 
aa 
l.x 7 
que integralia Y = + 
2 a 6 ' 2.4a 10 
1.3 x 11 1.3.5x 15 
etc.; hinc si x 
1.3.5 
4 
- 4 
a et utraque 
1.3.5.7 
11 in2.4a 1 0 
1 
15in2.4.6a 14 
1, erit y 
1 
3 + 2 in 7 
1.3 
2.4.6 in 15 1 2.4.6.8 in 19 
construitur curva elastica, est ay = 
1.3.5x 15 
2.4 in 11 
etc.; sic spatium, cujus rectificatione 
x 3 lx 7 1.3x 41 
3ina + 7in2a 5 1 11 in2.4a 9 
4 
4- 
etc. 
15in2.4.6 a 13 
Haud absimiliter invenitur ratio s ad x, ipsius curvae ad ab- 
scissam, per seriem: 
, aadx 
d s = 
, x 4 dx 1.3x 8 dx 1.3.5x 12 dx 
d x 4- 4 ——— b 
2a 4 
2.4 a 8 
x i 
2.4.6a 12 
1.3.5.7x 16 dx , x 5 1.3x 9 
+ 2.4.6 .8 x 16 etC ' ade ° qUe S = X + 2in5a^ + 
+ 2.4.6tal3 3 ‘* etC ' et P ° Sit0 x = a = 1 re P eritur 5 = 1 + 2in5 
1.3 1.3.5 1.3.5.7 
4 <: 
2.4 in 9 
4 
_!_ 1_ _7 fttc 
2.4.6inl3 ^ 2.4.6.8inl7
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.