3?
1
H
2
Polest.
1 = 1+ 0-1-04-0+0
xx
yj a 4 —3
XX lx 6 1.3x 10 1.3.5x 14 1.3.5.7x 18
etc.
aa 2 a 6
2.4a 10_r 2.4.6a 14 2.4.6.8a 18
•8
+ -7 +
12 v
TT ~
11 2 a
16 x
Tß 4 ~
16 a
20
etc.
•8
□ a 4
x _ = i_ +
x 4 a 8
2x12 3 X 16 4 x 2o
a 12 ■ a lb a 2U a .
X 1 * 3x 1 6 6x 20 10x 24 15x 28
-j l. u 4 —— etc.
ai 2 + a 16 a 20 ^ a* a ^
4-
.16
-4-
,20
4-
ox
24
,24
etc.
12
C.a 4
24
,28
hae series interpolentur inter 0 et l am potestatem, ut habeatur
potestas dimidia
xx
^a 4
quare dy
_ xx lx 6
T aa 2a 6
1.3.5x 14 , 1.3.5.7x 18 t
+ 4^—. „ ^ etc.
1.3x 10
2.4a 10 274.6 a 14 ’ 2.4.6.8a 18
V a
xxdx xxdx . l.x«dx + eorum-
aa
l.x 7
que integralia Y = +
2 a 6 ' 2.4a 10
1.3 x 11 1.3.5x 15
etc.; hinc si x
1.3.5
4
- 4
a et utraque
1.3.5.7
11 in2.4a 1 0
1
15in2.4.6a 14
1, erit y
1
3 + 2 in 7
1.3
2.4.6 in 15 1 2.4.6.8 in 19
construitur curva elastica, est ay =
1.3.5x 15
2.4 in 11
etc.; sic spatium, cujus rectificatione
x 3 lx 7 1.3x 41
3ina + 7in2a 5 1 11 in2.4a 9
4
4-
etc.
15in2.4.6 a 13
Haud absimiliter invenitur ratio s ad x, ipsius curvae ad ab-
scissam, per seriem:
, aadx
d s =
, x 4 dx 1.3x 8 dx 1.3.5x 12 dx
d x 4- 4 ——— b
2a 4
2.4 a 8
x i
2.4.6a 12
1.3.5.7x 16 dx , x 5 1.3x 9
+ 2.4.6 .8 x 16 etC ' ade ° qUe S = X + 2in5a^ +
+ 2.4.6tal3 3 ‘* etC ' et P ° Sit0 x = a = 1 re P eritur 5 = 1 + 2in5
1.3 1.3.5 1.3.5.7
4 <:
2.4 in 9
4
_!_ 1_ _7 fttc
2.4.6inl3 ^ 2.4.6.8inl7