Full text: Briefwechsel zwischen Leibniz, Jacob Bernoulli, Johann Bernoulli und Nicolaus Bernoulli (1. Abtheilung, Band 3)

HHHHfìlMHIMMlM 
42 
i Hi 
lE 
Brevius: Ductae intelligantur Bs, Bh parallelae ipsis CS, CH, 
eritque BAC+BHC=RBs+hBII=HBR — hBs=HBR — IICS. 
Q. E. D. 
Reducto ad puram Geometriam Problemate, in Analysi per 
gere non erit difficile, quam brevitatis gratia omitto. 
VII. Regula pro Constructionibus Mechanicarum per 
Rectificationem Linearum Algeb r aicarum. 
Ponatur indeterminata x, et coordinatarum lineae Algebraicae, 
una Vbx m + cx r , altera yjbx" l + cx r , existente rr m, sequitur 
Analysis Elementi curvae Algebraicae: 
bm . x m_1 +cr.x r_1 dx + bm.x m ~ 1 "+’cr.x r ~ 1 dx 
Liem. Loordm. 
2yjbx m + cx r 
Quadrata Elem. Coordin. 
2 V + b X m _j- c x r i 
bbmm.x 2m ~ a -f 2bcmr.x m + r ~ 2 -f ccrr.x 2 *~ 2 dx? 
4b.x m -f-4c.x r 
bbmm.x 2m—2 —2bcmr.x m + r_2 -f-ccrr.x 2r '~ 2 dx? 
+,4b.x ffl 4T4c.x r 
reducta ad idem nomen et addita faciunt 
pro 1. fòrttì. + b 3 mm. x 3m—2 + bcc rr. x m+2r ~ 2 — 2bccmr. v m+2r—2 
pro 2. form. 
3,.v 3r—2 
■f c 3 rr.x 
+bbcmm. x ,+2m-2 — 2bbcmr. x r+2m — 2 
dx? 
+ 2 b b x 2m + 2 c c x 2r 
factaque divisione per x 2,n , et extracta radice, habetur elementum 
Curvae 
dx>/+ b 3 mm. x m ~ 2 +bccrr — 2bccmr . x 2r_m—2 = / r = 2m 
= ====== posita 
dx V + c 3 rr. x 3r_2m—2 -fbbcmm — 2bbcmr. x r 2 \ m “ r 
V + 2bb + 2cc .x 2 '— 2w 
+ bm.x l/jm ~ 1 dx/ > b 
+ cr. x — '/¡ r -idx/'c 
V^2 yj + b b+cc, x 2m 
factaque divisione per-fbm/’b erit + x' ,iM ~ 1 
4-cr^c. -f-x~ ! 'A*-—i x 
T*- /±bb+ cc.x 2 
alicujus, cujus ordinatae sunt 
x 1 /* m ./ , 2.>/l+x m x l/am .y^2 .Jl— x m 
Bitcrs 
m m 
elementum Curvae 
, x r • .^1 -f-x r x r . v ^2.yj—J+x r 
m secundo casu, una , altera — 1 1 
r r
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.