Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 1)

■■nHn 
ON THE THEORY OF LINEAR TRANSFORMATIONS. 
There is no complete hyperdeterminant (i.e. for p — 1), and the incomplete ones are 
ah — bg — cf+de = u / , suppose, 
ah — de — bg + cf= u /t , 
ah — cf — de + bg = u //r 
Thus, suppose the transforming equations are 
= V X x + V X 2 , 
X 2 ~~~ ^*2^ X x X 2 ) 
yi = Pi Vi + Pi ¿/2. 
2/2 = P-2 y l + P2 2/2 ; 
Zi = V\ Z x + vi ¿2 , 
= vi ¿i + v 2 2 ¿2; 
u, = (/¿a 1 /¿2 2 - Pipe) (vi vi - Vi vi) u x , where y, z are changed 
u „ = (V za 2 2 — vi vi) (V \ 2 — V V) , „ 2, a? 
U tn = (V V - v V) (pi pi- pi pi) U un 
We might also have assumed 
u t —ad — be, or eh — gf 
u /t = af — be, or ch — dg, 
u ni — ag — ce, or bh — df, 
but these are ordinary determinants. 
(G) n = 4, m = 2. 
[13 
y 
a= 1111, 
i =1112, 
b = 2111, 
j = 2112, 
c = 1211, 
k = 1212, 
d = 2211, 
/ = 2212. 
e = 1121, 
m = 1122, 
/=2121, 
n=2122, 
g — 2211, 
0 =2212, 
h = 2221, 
^= 2222. 
U = a x x y x z x w x + 6 x 2 y 2 z x w x + c x x y 2 z x w x + d x 2 y 2 z l w l 
+ e x x y x z 2 w x + fx 2 y x z 2 w x + g x 2 y 2 z x w x + h x 2 y 2 z 2 w x 
+ iX x y x Z x W 2 +j X 2 y x Z x W 2 4- k X x y 2 Z x W 2 + l X 2 y 2 z x w 2 
+ w X x y x Z 2 W 2 + n X 2 y x Z 2 W 2 + 0 X 2 y 2 Z x W 2 + p X 2 y 2 Z 2 W. x , 
= ap — bo —cn + dm — el +fk + gj — hi;
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.