■■nHn
ON THE THEORY OF LINEAR TRANSFORMATIONS.
There is no complete hyperdeterminant (i.e. for p — 1), and the incomplete ones are
ah — bg — cf+de = u / , suppose,
ah — de — bg + cf= u /t ,
ah — cf — de + bg = u //r
Thus, suppose the transforming equations are
= V X x + V X 2 ,
X 2 ~~~ ^*2^ X x X 2 )
yi = Pi Vi + Pi ¿/2.
2/2 = P-2 y l + P2 2/2 ;
Zi = V\ Z x + vi ¿2 ,
= vi ¿i + v 2 2 ¿2;
u, = (/¿a 1 /¿2 2 - Pipe) (vi vi - Vi vi) u x , where y, z are changed
u „ = (V za 2 2 — vi vi) (V \ 2 — V V) , „ 2, a?
U tn = (V V - v V) (pi pi- pi pi) U un
We might also have assumed
u t —ad — be, or eh — gf
u /t = af — be, or ch — dg,
u ni — ag — ce, or bh — df,
but these are ordinary determinants.
(G) n = 4, m = 2.
[13
y
a= 1111,
i =1112,
b = 2111,
j = 2112,
c = 1211,
k = 1212,
d = 2211,
/ = 2212.
e = 1121,
m = 1122,
/=2121,
n=2122,
g — 2211,
0 =2212,
h = 2221,
^= 2222.
U = a x x y x z x w x + 6 x 2 y 2 z x w x + c x x y 2 z x w x + d x 2 y 2 z l w l
+ e x x y x z 2 w x + fx 2 y x z 2 w x + g x 2 y 2 z x w x + h x 2 y 2 z 2 w x
+ iX x y x Z x W 2 +j X 2 y x Z x W 2 4- k X x y 2 Z x W 2 + l X 2 y 2 z x w 2
+ w X x y x Z 2 W 2 + n X 2 y x Z 2 W 2 + 0 X 2 y 2 Z x W 2 + p X 2 y 2 Z 2 W. x ,
= ap — bo —cn + dm — el +fk + gj — hi;