■PM
14]
ON LINEAR TRANSFORMATIONS
The functions 0 may be transformed in the same way as the functions B have been.
In fact
0.(U, V, If) = 12 a_fc 23 3l a ~* Ok (U, V, If);
if in particular &=1, then
G X (U, V, W)= tf>° U- 1 if- 2
F *0 ^,1 -pr,2
W’° |f,2
but in general
£/ *7i p £/ ^ & Vs Ci {U, V, W), where p + p = a + a = t + t = 2a - 2,
2a—2 2a—2 2a—2
= G l {U'P F’- F’ T )=| if'P Z7’P +1 U'P +2
y,<r y, <r+1 "P", p+2
|f.r |y,r+l |y,p+2
whence G a (U, V, IF) = 22 {(-)p+°
[ff
^,p F ,.-! Jp.Sa-p-^
, p+1 F , <t y, 3 a—p—<r—l
JJ, p+2 y,<r+l jy, 3a—p—a
where A/ = l '~- r ^ J ; i extends from 0 to a — 1; p, a-— 1, and 3a —p —o- —2 may have
each of them any positive values not greater than 2a - 2.
In particular
G a (if, U, if) = 622 {(-)>+-1 i/’P if--" 1 tf'^-p
( if'P+! if* 0 ' JJ,3a—p—<r-\
i JJ,p+2 JJ ,<j+1 JJ,3a—p—j
where p, <x need only have such values that p < a — 1, <r— 1 < 3a — p — o- — 2.
In particular the derivative aei —... + 15e 3 may be transformed into
a, d,
9
-3
a, e,
f
-3
b,
c,
9
+ 6
b, d,
f
—15
c,
d,
e
b, e,
h
b, /,
9
c,
d,
h
c, e,
d,
e,
f
c, f,
i
c, 9,
h
d,
e,
i
d, f,
h
e,
/>
9
in which form it is obviously a linear function of the determinants