106
ON LINEAR TRANSFORMATIONS.
[14
Aoo =
A 2 ,
Aio =
-
2 A 2 ,
A20 =
— 2 D
3 -^sso
+
3 A 2 )
An =
2 7)
3 -^530
+
3 A j >
B530,
A 2 1 =
_ 1 T)
3 ^sso
-
iV A 2 )
£>440 =
_ 16 T)
15 -^530
-
33 A 2 )
£>431 =
1 T)
11-^530
-
1 7? 2
30 -°8 )
£>422 =
4 D
T5 -^530
+
2 7? 2
13 -°8 »
£>332 =
1
sh
b
i
-
1 7? 2
T5 -°8 >
AoO — 0,
-AlO)
£>720 =
D
81« >
A11 = o,
£>S30 = ^ AlO 3 -AlO)
A2I = 2* AlO '1' 2 AlO >
-AlO>
-All — 2" AlO 2 -^540 )
A22 = 0,
£>441 = 0,
A32 = i £> 810 + i £> 540 )
£>333 = 0.
Whatever be the value, all the tables except the three first commence thus, according
as f is even or odd,
£>/, 0,0 —
A 2 >
or A, 0,0 =0,
11
0
-w,
£>/—1,1,0)
£>/—2,2,0 —
— 3 A-3.3,0+3 A 2 »
A“ 2 , 2, 0 = — A-
£>/—2,1,1 =
3 A-3,3,0+3 A 2 >
£>/—2, 1,1 = 6,
£>/—3,3,0
but beyond this I am not acquainted with the law.
To give some formulae for the transformation of these derivatives; we have, for
example,
A-1,1.0 = (12.84)^ 18. 42 UUUU = 13.42 A-. (U, U)B f _ x {U, U).
But 13.42 = - Z&VsV* ~ + ViZ&V*,
and WA (A U)B f . x {U, A) = A-i(№ vU)B f _ x ( V U, ZU)
= B f _ x (A 0 A J ) B f _ 1 (A 1 A«), &c.
1 1
(where A °, A 1 stand for A 0 A x , &c.); or
A-1.1,0 = - 2 (A-i (A 0 A °) A_! (A 1 A >) - A-i (A- 0 A) B f _ 1 (A 1 A•)},
which reduces itself to
A-i,i,o = -2{£ / - 1 (A°A 1 )}»,
A-1,1.0 — 2 {A-1 (A» A•) A-i (A 1 A 1 ) - [A-1 (A■ 0 A 0?},
according as / is even or odd.