32] TO THE THEORY OF SPHERICAL COORDINATES. 215
Section 2. Geometrical Applications.
Consider any three axes Ax, Ay, Az, and let X, ¡a, v be the cosines of the
inclinations of these lines to each other.
Let A, M, N be the inclinations of the coordinate planes to each other; l, m, n
the inclination of the axes to the coordinate planes. Suppose, besides,
a = i -x 2 (17),.
b = l -y\
C = 1 - v\
f = fiv — X,
% = vX-fi,
1) = Xfji — v ,
k = 1 — X 2 — /A — v 2 + 2X/u» (18) ;
we have the following systems of equations :
V (t)C) cos A = — f, V (be) sin A = (k), V (a) sin l = (k) (19).
v (ca) cos M = — g, a/ (ca) sin M = ^ (k), V (b) sin m = sj (k)
V(ab) cos N = — f), V (ab) sin N = V (k), V (t) sin n — v (k).
a + vf) + /.tQ = k, (20).
vsi + b + xg = 0,
/¿a + xb + g = 0.
b+vb+/if=0, (21).
vf) 4~ b + Xf = k,
yu-b + Xb + f = 0.
g + vf+ fit = 0, (22).
vq + f + xt = 0.
yu.g -f- Xf -t- £ == k.
be— i 2 = ka (23).
ca— Q 2 = kb,
ab - b 3 = ,
gb - af = kf,
bf - bg = kg,
fg - cb = kh,
abc - af 2 - bg 2 - cb 2 + 2fgb = k 2 ..
(24).