Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 1)

ON THE ROTATION OF A SOLTD BODY ROUND A FIXED POINT. 
239 
37] 
where 
p -i 
Q 
1 
B 
«=e 
(B-G)qr + i {( 1 + V>^ + (V* + »)g+(to-,)*} 
{ 0-A)rp + i\(j,X-v) ^+(1 +^)^ + (^ + >)^} 
(A- B)pq + i j(,X + f) (/»> - X) ( 1 +,») 
4 
(2). 
A = i K 1 + ^- 2 ) V + (ty- — v)q + (\v + p) r}, ] 
M = i {0^ + v) p + ( 1 4- p 2 ) q + (pv — \)r} } l (3). 
N = l {(i/\ — p) p + (pv + A) q + ( 1 + v 2 ) r],J 
[whence also AA + ¿¿M + = £ k (\p + pq + vr) (3 bis)]. 
In the case where the forces vanish, the first three equations become simply 
P = ^(B-G)qr, j 
Q=±(C-A)rp, 
R = Q (A-B) pq, 
(4), 
and here the usual four integrals of the system are 
Ap 2 + Bq 2 + Cr 2 — li (5), 
Ap (1 + A 2 — p 2 — v 2 ) + 2Bq (Ap — v) + 2Or ( v\ + p) = a (L + A 2 + pi 1 + v 2 ), 4 
2Ap (Ap + v) + Bq (1 + p? - v 2 - A 2 ) + 2Cr (pv - A) = b (1 + A 2 + p 2 + v 2 ), ; (6), 
2Ap (vX — p) + 2Bq (pv + A) + Cr (1 + v 2 — A 2 — p 2 ) = c (1 + A 2 + p 2 + v 2 ), J 
or as they may also be written, 
a (1 + A 2 — p 2 — v 2 ) + 2b (Ap + v) + 2c (vX — p) = Ap (1 + A 2 + p 2 + v 2 ), 4 
2a (Ap — v) + b (1 + p 2 — v 2 — A 2 ) + 2c (pv + A) = Bq (1 + A 2 + p 2 + v 2 ), y 
2a (vX 4~ p) -(- 2b (pv — A) 4- c (1 v 2 — A - — p~) = Gv (1 4" A - 4- p~ 4~ v“'), J 
(6 bis); 
to Avhich we may add, 
A 2 p 2 4- B 2 q 2 + G 2 r 2 = k 2 (7) ; 
where k 2 = a 2 4- b 3 4- c 2 (8). 
Introducing the quantities k, O, (the former of which has been already made use 
of) given by the equations 
x = 1 4- A 2 + p 2 4- v 2 , ] 
G • 
XI = A Ap + pBq 4- vCr, J
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.