6
ON THE PROPERTIES OF A CERTAIN
[2
Considering the expression
f 1 dr V
if for a moment we write
\1 +1’ da? J {(1 + L) a 2 ... } f ’
( p $
(1 + l)a 2 = a 1 2 , &c.; Al = + ¿¿F 2 ’ pi = «i 2 + W • ••,
this becomes
A,«
1 ’
Pi**
m V • • a- + i .I , » 1 2i'(2t , + 2 —n)
JN ow it is immediately seen that — = —^ ;
from which we may deduce
A a 1 _ 2i (2i + 2) ... (2i + 2q — 2) (2i + 2 — n)... (2i + 2g — n)
1 p?~ p/ +q
or, restoring the value of p 1} and forming the expression for the general term of (yfr), this is
k-P** 1 f
A?
P2i(2i + 2 n)A^ 1 ( a * + p + m " + i a , + m p + mm ')<
4- &c.
p representing the quantity a? + b 2 + &c.
Hence, selecting the terms of the s th order in l, m, &c. the expression for the
part of which is of the s th order in l, m &c. may be written under the form
(a? + b 2 ... + la 2 + m& 2 4- &c.) {
1
a s(-l) S p^&
1 . 2 ... s
multiplied by
(
»’(» + !) ...(¿4-s-l) AP-^- s
2i (2i 4- 2 - n) (i + 1) ... (% + s) A ÿ_1 -j
,i+*+l
2i ^ + 2) (2 ' + 2 “ n > ( 2i + 4 - n) (i + 2) ... (» + 8 4 1) A
— &c.
[¿a 2 4- w6 2 ... = U suppose]
which for conciseness we shall represent by
(- 1 ) 8 a v +i t
1.2
p i+s
-f
i pj£r±) yiA p-*JL
+ 1.2 7s P i+S+2
— &c.
= suppose.